Regularity results for solutions to a class of obstacle problems
In this paper we prove some regularity properties of solutions to variational inequalities of the form ∫Ω〈A(x,u,Du),D(φ−u)〉dx≥∫ΩB(x,u,Du)(φ−u)dx,∀φ∈Kψ(Ω).Here Ω is a bounded open set of Rn, n≥2, the function ψ:Ω→[−∞,+∞), called obstacle, belongs to the Sobolev class W1,p(Ω) and Kψ(Ω)={w∈W1,p(Ω):w≥ψq...
Gespeichert in:
Veröffentlicht in: | Nonlinear analysis: real world applications 2021-12, Vol.62, p.103377, Article 103377 |
---|---|
1. Verfasser: | |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | In this paper we prove some regularity properties of solutions to variational inequalities of the form ∫Ω〈A(x,u,Du),D(φ−u)〉dx≥∫ΩB(x,u,Du)(φ−u)dx,∀φ∈Kψ(Ω).Here Ω is a bounded open set of Rn, n≥2, the function ψ:Ω→[−∞,+∞), called obstacle, belongs to the Sobolev class W1,p(Ω) and Kψ(Ω)={w∈W1,p(Ω):w≥ψq.o. inΩ} is the class of the admissible functions. First we establish a local Calderòn–Zygmund type estimate proving that the gradient of the solutions is as integrable as the gradient of the obstacle in the scale of Lebesgue spaces Lpq, for every q∈(1,∞), provided the partial map (x,u)↦A(x,u,ξ) is Hölder continuous and B(x,u,ξ) satisfies a suitable growth condition. Next, this estimate allows us to prove that a higher differentiability in the scale of Besov spaces of the gradient of the obstacle transfers to the gradient of the solutions. |
---|---|
ISSN: | 1468-1218 1878-5719 |
DOI: | 10.1016/j.nonrwa.2021.103377 |