A nonlinear viscoelastic plate equation with p⃗(x,t)-Laplace operator: Blow up of solutions with negative initial energy
In this paper we consider a nonlinear class viscoelastic plate equation with a lower order by perturbation of p⃗(x,t)-Laplace operator of the form utt+Δ2u−Δp⃗(x,t)u+∫0tg(t−s)Δu(s)ds−ϵΔut+f(u)=0,(x,t)∈QT=Ω×(0,T), associated with initial and Dirichlet–Neumann boundary conditions. Under suitable condit...
Gespeichert in:
Veröffentlicht in: | Nonlinear analysis: real world applications 2021-06, Vol.59, p.103240, Article 103240 |
---|---|
Hauptverfasser: | , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | In this paper we consider a nonlinear class viscoelastic plate equation with a lower order by perturbation of p⃗(x,t)-Laplace operator of the form utt+Δ2u−Δp⃗(x,t)u+∫0tg(t−s)Δu(s)ds−ϵΔut+f(u)=0,(x,t)∈QT=Ω×(0,T), associated with initial and Dirichlet–Neumann boundary conditions.
Under suitable conditions on g,f and the variable exponent of the p⃗(x,t)-Laplace operator, we prove a blow up in finite time with negative initial energy in the presence of a strong damping ϵΔut(ϵ>0) acting in the domain. This equation corresponds to a viscoelastic version arising in dynamics of elastoplastic flows and plate vibrations. |
---|---|
ISSN: | 1468-1218 1878-5719 |
DOI: | 10.1016/j.nonrwa.2020.103240 |