A nonlinear viscoelastic plate equation with p⃗(x,t)-Laplace operator: Blow up of solutions with negative initial energy

In this paper we consider a nonlinear class viscoelastic plate equation with a lower order by perturbation of p⃗(x,t)-Laplace operator of the form utt+Δ2u−Δp⃗(x,t)u+∫0tg(t−s)Δu(s)ds−ϵΔut+f(u)=0,(x,t)∈QT=Ω×(0,T), associated with initial and Dirichlet–Neumann boundary conditions. Under suitable condit...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Nonlinear analysis: real world applications 2021-06, Vol.59, p.103240, Article 103240
Hauptverfasser: Antontsev, S., Ferreira, J.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:In this paper we consider a nonlinear class viscoelastic plate equation with a lower order by perturbation of p⃗(x,t)-Laplace operator of the form utt+Δ2u−Δp⃗(x,t)u+∫0tg(t−s)Δu(s)ds−ϵΔut+f(u)=0,(x,t)∈QT=Ω×(0,T), associated with initial and Dirichlet–Neumann boundary conditions. Under suitable conditions on g,f and the variable exponent of the p⃗(x,t)-Laplace operator, we prove a blow up in finite time with negative initial energy in the presence of a strong damping ϵΔut(ϵ>0) acting in the domain. This equation corresponds to a viscoelastic version arising in dynamics of elastoplastic flows and plate vibrations.
ISSN:1468-1218
1878-5719
DOI:10.1016/j.nonrwa.2020.103240