The prototype Schwarzschild–Couder Telescope: A medium-sized telescope for the Cherenkov Telescope Array

The Schwarzschild–Couder Telescope (SCT) is a dual mirror medium-sized telescope proposed for the Cherenkov Telescope Array (CTA), the next-generation very-high energy (from about 20 GeV to 300 TeV) gamma-ray observatory. The SCT design consists of a dual-mirror optics and a high resolution camera w...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Nuclear instruments & methods in physics research. Section A, Accelerators, spectrometers, detectors and associated equipment Accelerators, spectrometers, detectors and associated equipment, 2023-11, Vol.1056, p.168432, Article 168432
1. Verfasser: Di Venere, Leonardo
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:The Schwarzschild–Couder Telescope (SCT) is a dual mirror medium-sized telescope proposed for the Cherenkov Telescope Array (CTA), the next-generation very-high energy (from about 20 GeV to 300 TeV) gamma-ray observatory. The SCT design consists of a dual-mirror optics and a high resolution camera with a field of view (FoV) of 8 degrees squared, which will allow exceptional performance in terms of angular resolution and background rejection. A prototype telescope (named pSCT) has been installed at the Fred Lawrence Whipple Observatory in Arizona, USA. Its camera is partially equipped and covers a FoV of 2.7°. The pSCT has recently successfully detected the Crab Nebula with a statistical significance of 8.6 standard deviations. The upgrade of the pSCT focal plane is now ongoing, aimed to equip the full camera with upgraded sensors and electronics, enhancing the telescope field of view from the current 2.7°to the final 8°. In this presentation, an overview of the pSCT project and obtained results will be given, together with the camera upgrade status and expected performance.
ISSN:0168-9002
1872-9576
DOI:10.1016/j.nima.2023.168432