A new collimated multichannel modular detection system based on Silicon Drift Detectors
After the manufacture and delivery of a state-of-the-art detection system for the XRF-XAFS beamline of the synchrotron light source SESAME, a new and improved detection system was realized. This new multichannel modular detection system based on Silicon Drift Detectors consists of 8 monolithic multi...
Gespeichert in:
Veröffentlicht in: | Nuclear instruments & methods in physics research. Section A, Accelerators, spectrometers, detectors and associated equipment Accelerators, spectrometers, detectors and associated equipment, 2023-04, Vol.1049, p.168118, Article 168118 |
---|---|
Hauptverfasser: | , , , , , , , , , , , , , , , , , , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | After the manufacture and delivery of a state-of-the-art detection system for the XRF-XAFS beamline of the synchrotron light source SESAME, a new and improved detection system was realized. This new multichannel modular detection system based on Silicon Drift Detectors consists of 8 monolithic multipixel arrays, each comprising 8 SDD cells with a total area of 570 mm2. As the previous one, this 64 channels integrated detection system includes ultra-low-noise front-end electronics, dedicated acquisition system, digital filtering, temperature control and stabilization. With respect to the SESAME version, the new instrument implements a tungsten collimation system yielding a total collimated sensitive area of 500 mm2. Optimized to work in an energy range of 3–30 keV, the system shows an overall energy resolution (sum of its 64 cells) below 180 eV FWHM at the 5.9 Mn Kα line at room temperature. We highlight the system performance and in particular the peak to background ratio, before and after the collimation of the sensors. |
---|---|
ISSN: | 0168-9002 1872-9576 |
DOI: | 10.1016/j.nima.2023.168118 |