DAMIC-M experiment: Thick, silicon CCDs to search for light dark matter

This report presents an overview of the unconventional use of charge-coupled devices (CCDs) to search for Dark Matter (DM). The DArk Matter in CCDs (DAMIC Experiment) employs the bulk silicon of thick, fully-depleted CCDs as a target for ionization signals produced by interations of particle dark ma...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Nuclear instruments & methods in physics research. Section A, Accelerators, spectrometers, detectors and associated equipment Accelerators, spectrometers, detectors and associated equipment, 2020-04, Vol.958, p.162933, Article 162933
1. Verfasser: Castelló-Mor, N.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:This report presents an overview of the unconventional use of charge-coupled devices (CCDs) to search for Dark Matter (DM). The DArk Matter in CCDs (DAMIC Experiment) employs the bulk silicon of thick, fully-depleted CCDs as a target for ionization signals produced by interations of particle dark matter from the galactic halo. The DAMIC collaboration has engaged in an extensive campaign of characterization efforts to understand the response of these CCDs to low-energy nuclear recoils and their unique capabilities, including the use of high spatial resolution for both the rejection and study of backgrounds. The preliminary results of DAMIC prove the performance of the detector, provide measurements of the background contamination and demonstrate the potentiality for DM searches, with only ∼40 grams of detector mass. The next phase of the experiment, DAMIC-M (DArk Matter in CCDs at Modane), will consist of a kg-sized detector, implementing the most massive CCDs ever built. These CCDs will feature sub-electron noise and will be deployed in a low-radioactivity environment at the Laboratoire Souterrain de Modane in France.
ISSN:0168-9002
1872-9576
DOI:10.1016/j.nima.2019.162933