Benchmarking simulations of the Compton Spectrometer and Imager with calibrations

The Compton Spectrometer and Imager (COSI) is a balloon-borne γ-ray (0.2-5 MeV) telescope designed to study astrophysical sources. COSI employs a compact Compton telescope design utilizing 12 high-purity germanium double-sided strip detectors and is inherently sensitive to polarization. In 2016, COS...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Nuclear instruments & methods in physics research. Section A, Accelerators, spectrometers, detectors and associated equipment Accelerators, spectrometers, detectors and associated equipment, 2019-12, Vol.946, p.162643, Article 162643
Hauptverfasser: Sleator, Clio C., Zoglauer, Andreas, Lowell, Alexander W., Kierans, Carolyn A., Pellegrini, Nicholas, Beechert, Jacqueline, Boggs, Steven E., Brandt, Terri J., Lazar, Hadar, Roberts, Jarred M., Siegert, Thomas, Tomsick, John A.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:The Compton Spectrometer and Imager (COSI) is a balloon-borne γ-ray (0.2-5 MeV) telescope designed to study astrophysical sources. COSI employs a compact Compton telescope design utilizing 12 high-purity germanium double-sided strip detectors and is inherently sensitive to polarization. In 2016, COSI was launched from Wanaka, New Zealand and completed a successful 46-day flight on NASA’s new Super Pressure Balloon. In order to perform imaging, spectral, and polarization analysis of the sources observed during the 2016 flight, we compute the detector response from well-benchmarked simulations. As required for accurate simulations of the instrument, we have built a comprehensive mass model of the instrument and developed a detailed detector effects engine which applies the intrinsic detector performance to Monte Carlo simulations. The simulated detector effects include energy, position, and timing resolution, thresholds, dead strips, charge sharing, charge loss, crosstalk, dead time, and detector trigger conditions. After including these effects, the simulations closely resemble the measurements, the standard analysis pipeline used for measurements can also be applied to the simulations, and the responses computed from the simulations are accurate. We have computed the systematic error that we must apply to measured fluxes at certain energies, which is 6.3% on average. Here we describe the detector effects engine and the benchmarking tests performed with calibrations.
ISSN:0168-9002
1872-9576
DOI:10.1016/j.nima.2019.162643