Arbutin attenuates monosodium L-glutamate induced neurotoxicity and cognitive dysfunction in rats

Excitotoxicity, oxidative stress, and neuro-inflammation underlie the pathogenesis of neurodegenerative brain disorders. Although L-glutamate is the prime excitatory neurotransmitter involved in diverse brain functions, however, overabundance at synapse can activate cell death mechanisms. Previous s...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Neurochemistry international 2021-12, Vol.151, p.105217, Article 105217
Hauptverfasser: Kumar, Manish, Kumar, Anil, Sindhu, Rakesh K., Kushwah, Ajay Singh
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:Excitotoxicity, oxidative stress, and neuro-inflammation underlie the pathogenesis of neurodegenerative brain disorders. Although L-glutamate is the prime excitatory neurotransmitter involved in diverse brain functions, however, overabundance at synapse can activate cell death mechanisms. Previous studies indicate that arbutin affords relief in metabolic, cardiovascular, and gastrointestinal disorders. Recently, arbutin showed benefits in animal models of epilepsy, Parkinson's disease, and Alzheimer's disease that further expanded its therapeutic potential against brain disorders. In the present study, we aimed to evaluate the potential of arbutin against monosodium L-glutamate (MSG) neurotoxicity in rats. Wistar rats (male, 180–200 g) were administered MSG (4 mg/kg) and arbutin (50 and 100 mg/kg) intraperitoneally for 21 days. Cognitive functions were assessed using elevated plus maze and novel object recognition task. Biochemical parameters of oxidative stress, tumour necrosis factor-α (TNF-α), γ-amino butyric acid (GABA), acetylcholinesterase (AChE) activity, lactate dehydrogenase (LDH), and intracellular cation-levels (Na+, Ca2+, K+) were determined using whole brain. Administration of MSG augmented cation-levels, oxidative stress, inflammation, AChE, and LDH activities, and decreased GABA levels in the brain. Arbutin (50 and 100 mg/kg, i.p.) significantly decreased these biochemical disturbances in the brain of MSG administered rats. Behavioural results showed that MSG triggered cognitive deficits in rats that were significantly attenuated by arbutin. Histopathological findings in hippocampus and cortex revealed neuroprotective outcome of arbutin treatments against MSG. MK-801 and N(G)-nitro-L-arginine methyl ester (L-NAME) enhanced memory and neuroprotective effects in rats treated with arbutin and MSG. Arbutin may afford therapeutic advantages in neurodegenerative brain disorders by suppressing the excitotoxic pathways. •Monosodium L-glutamate (MSG) deteriorated cognitive functions in rats.•MSG caused cation imbalance, oxidative stress, inflammation and neurodegeneration.•MSG increased acetylcholinesterase activity and reduced GABA levels in brain.•Arbutin attenuated MSG triggered biochemical and behavioural abnormalities.•MK-801 or L-NAME enhanced neuroprotection in arbutin and MSG treated rats.
ISSN:0197-0186
1872-9754
DOI:10.1016/j.neuint.2021.105217