Synergistic antibacterial therapy for multidrug-resistant bacterial infections using multifunctional nanozymes
Multidrug-resistant (MDR) bacterial infections have become major threats to public health worldwide. To address this challenge, nanozyme with intrinsic enzyme-like activity has been used that can serve as broad-spectrum antibiotics. However, the efficacy of individual nanozyme is hindered by its lim...
Gespeichert in:
Veröffentlicht in: | Nano today 2024-02, Vol.54, p.102118, Article 102118 |
---|---|
Hauptverfasser: | , , , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | Multidrug-resistant (MDR) bacterial infections have become major threats to public health worldwide. To address this challenge, nanozyme with intrinsic enzyme-like activity has been used that can serve as broad-spectrum antibiotics. However, the efficacy of individual nanozyme is hindered by its limited catalytic activity and therapeutic efficiency. In this study, we develop broad-spectrum antibacterial nanocomposites, namely IrOx@PDA NPs-RSNO (IP NPs-RSNO), which demonstrate remarkable efficacy in eradicating MDR bacteria. The excellent antibacterial performance of IP NPs-RSNO is attributed to the synergistic effects of NIR photothermal property, NIR-enhanced peroxidase-like (POD-like) activity, and NIR-triggered release of NO. IP NPs-RSNO can effectively eliminate carbapenem-resistant Escherichia coli (CREC) and methicillin-resistant Staphylococcus aureus (MRSA), showing excellent therapeutic performance in treating MRSA-infected wounds. This work provides insights into the design of multifunctional nanozymes for antibacterial applications.
[Display omitted]
•IP NPs-RSNO as a multifunctional nanocomposite for broad-spectrum antibacterial therapy exhibited exceptional efficacy in eradicating MDR bacteria for antibacterial therapeutics.•The remarkable performance of IP NPs-RSNO was attributed to the synergistic interplay of (1) NIR photothermal property; (2) NIR-enhanced peroxidase-like activity; (3) NIR-triggered release of NO.•IP NPs-RSNO had demonstrated the ability to effectively eliminate bacterial strains such as 99.99 % CREC and 99.98 % MRSA within 5 minutes, showing outstanding therapeutic performance in treating MRSA-infected wounds. |
---|---|
ISSN: | 1748-0132 1878-044X |
DOI: | 10.1016/j.nantod.2023.102118 |