Coupling interfacial effect in heterogeneous RuP2-RuP for accelerating sulfur reduction reaction of lithium sulfur batteries

The cathodic host for practical lithium sulfur (Li–S) batteries needs to meet numerous requirements, such as outstanding electron conductivity, desirable lithium polysulfide (LiPSs) adsorption ability, and efficient catalytic effect towards the redox of sulfur. Given the above considerations, an N,...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Nano energy 2024-09, Vol.128, p.109859, Article 109859
Hauptverfasser: Song, Hewei, Nguyen, Thanh Tuan, Chu, Rongrong, Bai, Yanqun, Kim, Nam Hoon, Lee, Joong Hee
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:The cathodic host for practical lithium sulfur (Li–S) batteries needs to meet numerous requirements, such as outstanding electron conductivity, desirable lithium polysulfide (LiPSs) adsorption ability, and efficient catalytic effect towards the redox of sulfur. Given the above considerations, an N, P, S tri-doped 3D interconnected porous carbon embedded with heterogeneous ruthenium phosphides (RuP2-RuP@NPSC) was constructed to serve as a sulfur host for high-performance and practical Li–S battery. Strong interfacial coupling effect in the RuP2-RuP heterojunctions endowed the active sites with favorable LiPSs adsorption ability and boosted sulfur reduction reaction. The density functional theory calculation suggested that the electronic tuning of the constructed heterojunction interface could enhance the electron transport and LiPSs adsorption ability. The higher current response of symmetric cells, larger Li2S deposition and dissolution capacity of RuP2-RuP@NPSC in comparison to other counterparts of RuP@NPSC, RuP2@NPSC, and NPSC further verified the great catalytic capability of RuP2-RuP heterojunctions. As a result, corresponding cells with RuP2-RuP@NPSC/S electrodes delivered an impressive reversible capacity of 565 mAh g−1 at 6 C, and an ultralow capacity decay rate of 0.019 % per cycle after 1000 cycles was achieved at the current of 2 C. The commercial level high sulfur loading pouch cells further confirmed the feasibility and practicability of RuP2-RuP@NPSC/S based Li–S battery [Display omitted] •RuP2-RuP heterostructure dispersed on multi-doped hollow carbon was constructed.•Synergistic effects could manipulate interface and improve LiPSs adsorption.•RuP2-RuP sites weaken the S–S bonding energy and facilitate the LiPSs conversion.•RuP2-RuP@NPSC/S based LSB exhibited impressive stability and practicability.
ISSN:2211-2855
DOI:10.1016/j.nanoen.2024.109859