Multi-scale CuS-rGO pyramidal photothermal structure for highly efficient solar-driven water evaporation and thermoelectric power generation
Integrated water evaporation and thermoelectric power generation system (IWETPGS) has been recognized to be a promising strategy for the utilization of solar energy. Herein, we developed a new type of IWETPGS with multi-scale pyramidal photothermal structures. They featured three-dimensional pyramid...
Gespeichert in:
Veröffentlicht in: | Nano energy 2024-06, Vol.125, p.109531, Article 109531 |
---|---|
Hauptverfasser: | , , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | Integrated water evaporation and thermoelectric power generation system (IWETPGS) has been recognized to be a promising strategy for the utilization of solar energy. Herein, we developed a new type of IWETPGS with multi-scale pyramidal photothermal structures. They featured three-dimensional pyramidal structures with microscale gradient porous copper foams, as well as micro/nanoscale CuS nanowires and reduced graphene oxide (rGO) composite materials. They combined the merits of efficient multiple refraction and absorption of light, broad-spectrum absorption capabilities of rGO and high near-infrared extinction coefficient of CuS, as well as fast water transportation by gradient porous matrix. These photothermal structures induced a photothermal conversion efficiency of 97.6%. An IWETPGS integrating these structures with a thermoelectric generator (TEG) and microchannel heat sink was developed, and outstanding evaporation and output power performance were obtained simultaneously with an evaporation rate of 2.29 kg/m2h and maximum output power of 1.32 W/m2 under 1 sun illumination. Outdoor tests showed that an average daily water production of 12.1 kg/m2 and a maximum power generation of 5.55 W/m2 was obtained. This work provides a high-performance multi-scale CuS-rGO pyramidal photothermal structure to achieve freshwater and thermoelectric power co-generation, which provides potential opportunities for freshwater and electricity supply in remote areas.
[Display omitted]
•Integrated water evaporation and thermoelectric power generation system (IWETPGS) was developed.•Pyramidal structures with gradient porous copper foams and CuS-rGO composite materials was prepared.•Outstanding evaporation and output power performance were obtained for the IWETPGS. |
---|---|
ISSN: | 2211-2855 |
DOI: | 10.1016/j.nanoen.2024.109531 |