Insights into efficiency deviation from current-mismatch for tandem photovoltaics
For tandem solar cells (TSCs), the highest efficiency is generally believed to occur when the top and bottom sub-cells obtain an identical photocurrent, i.e., the current-match condition. However, the real situation is that there is a slight deviation from the matching point, which is an interesting...
Gespeichert in:
Veröffentlicht in: | Nano energy 2024-02, Vol.120, p.109165, Article 109165 |
---|---|
Hauptverfasser: | , , , , , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | For tandem solar cells (TSCs), the highest efficiency is generally believed to occur when the top and bottom sub-cells obtain an identical photocurrent, i.e., the current-match condition. However, the real situation is that there is a slight deviation from the matching point, which is an interesting phenomenon, but lacks a clear explanation. Here, we report a coupled photoelectric investigation on the intrinsic mechanisms within TSCs under various current configurations. Taking an all-perovskite TSC as an example, we find that the efficiency deviation originates from the current reduction and fill factor (FF) compensation; moreover, the optimal efficiency depends primarily on the sub-cells with higher FF. Our analysis further reveals that the higher FF and efficiency are achieved under current-mismatch condition due to the differentiated voltage assignments among the sub-cells, i.e., the sub-cells with higher currents require larger voltages in order to effectively recombine the surplus currents. We also find that the impact of sub-cell leakage on TSC performance can be partially alleviated by increasing the current of the affected sub-cell. Such an optoelectronic insight offers a valuable guidance for designing high-efficiency TSCs.
[Display omitted]
●A comprehensive photoelectric coupled model of tandem photovoltaic operating under current-mismatch conditions was developed.●Origin of FF compensation effect under current mismatch conditions was identified.●Imposing current limits on sub-cells with superior performance can effectively enhance overall TSC performance. |
---|---|
ISSN: | 2211-2855 |
DOI: | 10.1016/j.nanoen.2023.109165 |