Self-powered cardiac pacemaker by piezoelectric polymer nanogenerator implant
Self-powered biomedical implants improve the life of patients and lower the risks associated with battery replacement. Piezoelectric energy harvesters that generate electricity from the cardiac motions are among the potential candidates to be used in self-powered implants, such as cardiac pacemakers...
Gespeichert in:
Veröffentlicht in: | Nano energy 2021-05, Vol.83, p.105781, Article 105781 |
---|---|
Hauptverfasser: | , , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | Self-powered biomedical implants improve the life of patients and lower the risks associated with battery replacement. Piezoelectric energy harvesters that generate electricity from the cardiac motions are among the potential candidates to be used in self-powered implants, such as cardiac pacemakers. In this context, lead-based ceramic piezoelectric nanogenerators (PNGs) were emerged, which are toxic and susceptible to fatigue crack, causing harm to the patients. Polyvinylidene fluoride-trifluoroethylene (PVDF-TrFE)-based films were also developed as cardiac energy harvesters. Here, we show a battery-free heart pacemaker that is powered by the generated electricity of a biocompatible and flexible piezoelectric polymer-based nanogenerator (PNG) from the cardiac motions of the left ventricle. The PNG is comprised of composite nanofibers of poly(vinylidene fluoride) (PVDF) and a hybrid nanofiller made of zinc oxide (ZnO) and reduced graphene oxide (rGO). The composite nanofiber is optimized towards achieving a large power output. In vivo implanted optimized PNG can successfully harvest 0.487 μJ from every heartbeat, which is conveniently larger than the pacing threshold energy for the human heart. The successful demonstration of a self-powered pacemaker places the polymer-based PNGs among the viable candidates for self-powered biomedical implants.
[Display omitted]
•Employing an optimization method to prepare a high-power density piezoelectric nanogenerator based on PVDF composite fiber.•The encapsulated optimized nanogenerator is flexible and it has shown excellent biocompatibility.•Implanting the nanogenerator on the heart of an adult dog yields energy of 0.487 μJ, being sufficient to power a pacemaker.•A pacemaker is powered by the nanogenerator through in vivo energy harvesting, generating pacing pulses. |
---|---|
ISSN: | 2211-2855 |
DOI: | 10.1016/j.nanoen.2021.105781 |