High energy density with ultrahigh discharging efficiency obtained in ceramic-polymer nanocomposites using a non-ferroelectric polar polymer as matrix

To overcome the low discharging efficiency of ceramic-polymer composites using ferroelectric polymers as matrix and to take the advantage in fabrication offered by the polar polymer, a polar but non-ferroelectric polymer – poly(methyl methacrylate) (PMMA) – was selected as the matrix in the developm...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Nano energy 2020-04, Vol.70, p.104551, Article 104551
Hauptverfasser: Lu, Xu, Zou, Xiaowan, Shen, Jialiang, Zhang, Lin, Jin, Li, Cheng, Z.-Y.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:To overcome the low discharging efficiency of ceramic-polymer composites using ferroelectric polymers as matrix and to take the advantage in fabrication offered by the polar polymer, a polar but non-ferroelectric polymer – poly(methyl methacrylate) (PMMA) – was selected as the matrix in the development of high performance composites for energy storage. Ba0.5Sr0.5TiO3 (BST) nanoparticles were selected as the filler. Freestanding and flexible BST-PMMA ceramic-polymer nanocomposites with BST content up to 30 vol.% were fabricated in thickness of about 5 μm using spin-coating process and were systemically studied. Due to the strong interaction between the polar groups of PMMA and the hydroxyl groups on the surface of BST nanoparticles, the suspension of BST nanoparticles in PMMA solution exhibits excellent stability and, hence, the nanocomposite films have excellent microstructure uniformity and compatibility between the BST nanoparticles and PMMA matrix. All the BST-PMMA films exhibit excellent frequency (100 Hz to 1 MHz) and temperature (−90 to 100 °C) stabilities in their dielectric properties with a high energy-storage density of more than 11 J/cm3. Most importantly, an ultra-high discharging efficiency of almost 100% is obtained in all the nanocomposites. [Display omitted] •Non-ferroelectric polar polymer is introduced as matrix for the nanocomposites used as energy-storage dielectrics.•High energy density with ultrahigh discharging efficiency (~100%) are demonstrated by BST-PMMA nanocomposite films.•The BST-PMMA nanocomposite films exhibit excellent temperature and frequency stabilities of dielectric properties.
ISSN:2211-2855
DOI:10.1016/j.nanoen.2020.104551