Nanowire-array-based gene electro-transfection system driven by human-motion operated triboelectric nanogenerator
Electro-transfection serves as a promising non-viral gene delivery approach, but its performance faces several drawbacks associated with the high-voltage electrical pulses involved, which may adversely affect the cell viability. Here we developed a novel TENG (triboelectric nanogenerator)-driven nan...
Gespeichert in:
Veröffentlicht in: | Nano energy 2019-10, Vol.64, p.103901, Article 103901 |
---|---|
Hauptverfasser: | , , , , , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | Electro-transfection serves as a promising non-viral gene delivery approach, but its performance faces several drawbacks associated with the high-voltage electrical pulses involved, which may adversely affect the cell viability. Here we developed a novel TENG (triboelectric nanogenerator)-driven nanowire electrode array (T-NEA) platform to facilitate the electroporation-based siRNA delivery into both adhesive and non-adhesive mammalian cells. Unlike conventional electroporation technology, the T-NEA system is powered by a TENG working in a vertical contact-separation mode, harvesting energy from simple human tapping motion. Since lower voltage is involved in the T-NEA system as compared to conventional electroporation method, high (>90%) cell viability was achieved for all of the six kinds of cell lines used in the experiments. Highly efficient siRNA electro-transfection was achieved at a tiny amount of energy consumption. The results exhibit that siRNA molecules could be successfully delivered into more than 95% of MiaPaCa-2 cell. Even for K562 cells, which is well-known as difficult-to-transfect cell, the delivery efficiency of siRNA reaches 84%. With the T-NEA system, the K-ras gene expression in MiaPaCa-2 cells was down-regulated by 46 ± 6.29%, and the bcr-abl gene expression was reduced by 31.6 ± 6.67% in K562 cells. When the expressions of the targeted mutation genes were significantly down-regulated, the cell proliferation and anti-apoptosis ability were significantly inhibited. Overall, the T-NEA system is demonstrated as an effective and versatile platform for high-throughput gene delivery in biological research and clinical cancer treatments due to its versatility, efficiency, and uniformity.
[Display omitted]
•Self-powered gene electro-transfection system.•Facile and low-cost fabrication process.•Easy operation and universality on different cell lines.•High siRNA transfection efficiency with low cell damage.•High inhibition efficiency on targeting oncogene expression. |
---|---|
ISSN: | 2211-2855 |
DOI: | 10.1016/j.nanoen.2019.103901 |