Non-constant functions with zero nonlocal gradient and their role in nonlocal Neumann-type problems
This work revolves around properties and applications of functions whose nonlocal gradient, or more precisely, finite-horizon fractional gradient, vanishes. Surprisingly, in contrast to the classical local theory, we show that this class forms an infinite-dimensional vector space. Our main result ch...
Gespeichert in:
Veröffentlicht in: | Nonlinear analysis 2024-12, Vol.249, p.113642, Article 113642 |
---|---|
Hauptverfasser: | , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | This work revolves around properties and applications of functions whose nonlocal gradient, or more precisely, finite-horizon fractional gradient, vanishes. Surprisingly, in contrast to the classical local theory, we show that this class forms an infinite-dimensional vector space. Our main result characterizes the functions with zero nonlocal gradient in terms of two simple features, namely, their values in a layer around the boundary and their average. The proof exploits recent progress in the solution theory of boundary-value problems with pseudo-differential operators. We complement these findings with a discussion of the regularity properties of such functions and give illustrative examples. Regarding applications, we provide several useful technical tools for working with nonlocal Sobolev spaces when the common complementary-value conditions are dropped. Among these, are new nonlocal Poincaré inequalities and compactness statements, which are obtained after factoring out functions with vanishing nonlocal gradient. Following a variational approach, we exploit the previous findings to study a class of nonlocal partial differential equations subject to natural boundary conditions, in particular, nonlocal Neumann-type problems. Our analysis includes a proof of well-posedness and a rigorous link with their classical local counterparts via Γ-convergence as the fractional parameter tends to 1. |
---|---|
ISSN: | 0362-546X |
DOI: | 10.1016/j.na.2024.113642 |