Hardy inequalities for antisymmetric functions
We study Hardy inequalities for antisymmetric functions in three different settings: Euclidean space, torus and the integer lattice. In particular, we show that under the antisymmetric condition the sharp constant in Hardy inequality increases substantially and grows as d4 as d→∞ in all cases. As a...
Gespeichert in:
Veröffentlicht in: | Nonlinear analysis 2024-11, Vol.248, p.113619, Article 113619 |
---|---|
1. Verfasser: | |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | We study Hardy inequalities for antisymmetric functions in three different settings: Euclidean space, torus and the integer lattice. In particular, we show that under the antisymmetric condition the sharp constant in Hardy inequality increases substantially and grows as d4 as d→∞ in all cases. As a side product, we prove Hardy inequality on a domain whose boundary forms a corner at the point of singularity x=0. |
---|---|
ISSN: | 0362-546X |
DOI: | 10.1016/j.na.2024.113619 |