L∞ blow-up in the Jordan–Moore–Gibson–Thompson equation

The Jordan–Moore–Gibson–Thompson equation τuttt+αutt=βΔut+γΔu+(f(u))ttis considered in a smoothly bounded domain Ω⊂Rn with n≤3, where τ>0,β>0,γ>0, and α∈R. Firstly, it is seen that under the assumption that f∈C3(R) is such that f(0)=0, gradient blow-up phenomena cannot occur in the sense th...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Nonlinear analysis 2024-10, Vol.247, p.113600, Article 113600
Hauptverfasser: Nikolić, Vanja, Winkler, Michael
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:The Jordan–Moore–Gibson–Thompson equation τuttt+αutt=βΔut+γΔu+(f(u))ttis considered in a smoothly bounded domain Ω⊂Rn with n≤3, where τ>0,β>0,γ>0, and α∈R. Firstly, it is seen that under the assumption that f∈C3(R) is such that f(0)=0, gradient blow-up phenomena cannot occur in the sense that for any appropriately regular initial data, within a suitable framework of strong solvability, an associated Dirichlet type initial–boundary value problem admits a unique solution u on a maximal time interval (0,Tmax) which is such that ifTmax
ISSN:0362-546X
1873-5215
DOI:10.1016/j.na.2024.113600