Topological multi-vortex solutions of the Maxwell–Chern–Simons–Higgs model with a background metric
In this paper, we consider the self-dual equations arising from the Maxwell–Chern–Simons–Higgs model in a curved space with a background metric (1,−b(x),−b(x)). We assume that b(x) is not a constant and decays like |x|−γ with γ∈(0,2). Then, we prove that there exists a positive constant β∗ such that...
Gespeichert in:
Veröffentlicht in: | Nonlinear analysis 2023-10, Vol.235, p.113345, Article 113345 |
---|---|
Hauptverfasser: | , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | In this paper, we consider the self-dual equations arising from the Maxwell–Chern–Simons–Higgs model in a curved space with a background metric (1,−b(x),−b(x)). We assume that b(x) is not a constant and decays like |x|−γ with γ∈(0,2). Then, we prove that there exists a positive constant β∗ such that we have a topological solution of the self-dual equations if the couplings constants κ and q satisfy κq>β∗. We also verify the Chern–Simons limit which means that our solutions converge to the solution of the self-dual Chern–Simons vortex equation as q→∞. |
---|---|
ISSN: | 0362-546X 1873-5215 |
DOI: | 10.1016/j.na.2023.113345 |