Topological multi-vortex solutions of the Maxwell–Chern–Simons–Higgs model with a background metric

In this paper, we consider the self-dual equations arising from the Maxwell–Chern–Simons–Higgs model in a curved space with a background metric (1,−b(x),−b(x)). We assume that b(x) is not a constant and decays like |x|−γ with γ∈(0,2). Then, we prove that there exists a positive constant β∗ such that...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Nonlinear analysis 2023-10, Vol.235, p.113345, Article 113345
Hauptverfasser: Han, Jongmin, Song, Kyungwoo
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:In this paper, we consider the self-dual equations arising from the Maxwell–Chern–Simons–Higgs model in a curved space with a background metric (1,−b(x),−b(x)). We assume that b(x) is not a constant and decays like |x|−γ with γ∈(0,2). Then, we prove that there exists a positive constant β∗ such that we have a topological solution of the self-dual equations if the couplings constants κ and q satisfy κq>β∗. We also verify the Chern–Simons limit which means that our solutions converge to the solution of the self-dual Chern–Simons vortex equation as q→∞.
ISSN:0362-546X
1873-5215
DOI:10.1016/j.na.2023.113345