Good geodesics satisfying the timelike curvature-dimension condition

Let (M,d,m,≪,≤,τ) be a causally closed, K-globally hyperbolic, regular measured Lorentzian geodesic space satisfying the weak timelike curvature-dimension condition wTCDpe(K,N) in the sense of Cavalletti and Mondino. We prove the existence of geodesics of probability measures on M which satisfy the...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Nonlinear analysis 2023-04, Vol.229, p.113205, Article 113205
1. Verfasser: Braun, Mathias
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:Let (M,d,m,≪,≤,τ) be a causally closed, K-globally hyperbolic, regular measured Lorentzian geodesic space satisfying the weak timelike curvature-dimension condition wTCDpe(K,N) in the sense of Cavalletti and Mondino. We prove the existence of geodesics of probability measures on M which satisfy the entropic semiconvexity inequality defining wTCDpe(K,N) and whose densities with respect to m are additionally uniformly L∞ in time. This holds apart from any nonbranching assumption. We also discuss similar results under the timelike measure-contraction property.
ISSN:0362-546X
1873-5215
DOI:10.1016/j.na.2022.113205