Good geodesics satisfying the timelike curvature-dimension condition
Let (M,d,m,≪,≤,τ) be a causally closed, K-globally hyperbolic, regular measured Lorentzian geodesic space satisfying the weak timelike curvature-dimension condition wTCDpe(K,N) in the sense of Cavalletti and Mondino. We prove the existence of geodesics of probability measures on M which satisfy the...
Gespeichert in:
Veröffentlicht in: | Nonlinear analysis 2023-04, Vol.229, p.113205, Article 113205 |
---|---|
1. Verfasser: | |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | Let (M,d,m,≪,≤,τ) be a causally closed, K-globally hyperbolic, regular measured Lorentzian geodesic space satisfying the weak timelike curvature-dimension condition wTCDpe(K,N) in the sense of Cavalletti and Mondino. We prove the existence of geodesics of probability measures on M which satisfy the entropic semiconvexity inequality defining wTCDpe(K,N) and whose densities with respect to m are additionally uniformly L∞ in time. This holds apart from any nonbranching assumption. We also discuss similar results under the timelike measure-contraction property. |
---|---|
ISSN: | 0362-546X 1873-5215 |
DOI: | 10.1016/j.na.2022.113205 |