Existence of solutions of degenerate parabolic equations with inhomogeneous density and growing data on manifolds

We consider doubly non-linear degenerate parabolic equations on Riemannian manifolds of infinite volume. The equation is inhomogeneous: indeed it contains a capacitary coefficient depending on the space variable, which we assume to decay at infinity. We prove existence of solutions for initial data...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Nonlinear analysis 2022-06, Vol.219, p.112818, Article 112818
Hauptverfasser: Andreucci, Daniele, Tedeev, Anatoli F.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:We consider doubly non-linear degenerate parabolic equations on Riemannian manifolds of infinite volume. The equation is inhomogeneous: indeed it contains a capacitary coefficient depending on the space variable, which we assume to decay at infinity. We prove existence of solutions for initial data growing at infinity in a suitable admissible class and some related estimates. We also prove, independently, a sup bound valid in the same geometrical setting for solutions which are a priori known to have compact support; the majorization depends on the size of the support.
ISSN:0362-546X
1873-5215
DOI:10.1016/j.na.2022.112818