The asymptotic behavior of viscosity solutions of Monge–Ampère equations in half space
In this paper we report the asymptotic behavior at infinity of convex viscosity solution of detD2u=1 outside a bounded domain of the upper half space. It is shown that if the solution is a quadratic polynomial plus a logarithmic function at the flat boundary, then it tends to a quadratic polynomial...
Gespeichert in:
Veröffentlicht in: | Nonlinear analysis 2021-05, Vol.206, p.112229, Article 112229 |
---|---|
Hauptverfasser: | , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | In this paper we report the asymptotic behavior at infinity of convex viscosity solution of detD2u=1 outside a bounded domain of the upper half space. It is shown that if the solution is a quadratic polynomial plus a logarithmic function at the flat boundary, then it tends to a quadratic polynomial plus a “log” term at infinity, where the “log” term means that it can be controlled by logarithmic function. Meanwhile, more accurate asymptotic behaviors at infinity are acquired. |
---|---|
ISSN: | 0362-546X 1873-5215 |
DOI: | 10.1016/j.na.2020.112229 |