The asymptotic behavior of viscosity solutions of Monge–Ampère equations in half space

In this paper we report the asymptotic behavior at infinity of convex viscosity solution of detD2u=1 outside a bounded domain of the upper half space. It is shown that if the solution is a quadratic polynomial plus a logarithmic function at the flat boundary, then it tends to a quadratic polynomial...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Nonlinear analysis 2021-05, Vol.206, p.112229, Article 112229
Hauptverfasser: Jia, Xiaobiao, Li, Dongsheng
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:In this paper we report the asymptotic behavior at infinity of convex viscosity solution of detD2u=1 outside a bounded domain of the upper half space. It is shown that if the solution is a quadratic polynomial plus a logarithmic function at the flat boundary, then it tends to a quadratic polynomial plus a “log” term at infinity, where the “log” term means that it can be controlled by logarithmic function. Meanwhile, more accurate asymptotic behaviors at infinity are acquired.
ISSN:0362-546X
1873-5215
DOI:10.1016/j.na.2020.112229