Porous rGO/networked cellulose composite membranes: Towards enhanced nanofiltration performance of rGO-based membranes

Graphene-based materials have been widely used for the fabrication of superior separation membranes for water treatment and purification. In particular, reduced graphene oxide (rGO), which has better water stability than graphene oxide (GO), has been demonstrated to be a good building block. However...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Materials Today Sustainability 2024-03, Vol.25, p.100682, Article 100682
Hauptverfasser: Mohammed, Shabin, Aburabie, Jamaliah, Nassrullah, Haya, Hashaikeh, Raed
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:Graphene-based materials have been widely used for the fabrication of superior separation membranes for water treatment and purification. In particular, reduced graphene oxide (rGO), which has better water stability than graphene oxide (GO), has been demonstrated to be a good building block. However, rGO laminates are characterized by narrow interlayer spacing leading to dense packing and consequently lower flux limiting their direct utilization for membrane development. In this study, we report the fabrication of networked cellulose (NC)/porous rGO composite membranes with enhanced separation performance. We observed a synergistic effect due to the incorporation of NC and the presence of nano-pores on the rGO sheets. Firstly, in addition to the enhanced hydrophilicity and mechanical stability, the presence of NC with networked fibers reduced the horizontal transport resistance within the interlayer channels due to the formation of voids and wrinkles. Secondly, in-plane pores created by H2O2 oxidation of GO effectively contributed to additional transport channels providing shortened transport length for water molecules. Results showed that composite membranes maintained stable long-term performance with a pure water permeance up to 25.1 ± 2.2 Lm−2h−1bar−1 and salt rejection of 70.2 %, 63.08 %, 17.13 % and 25.62 %, for Na2SO4, MgSO4, MgCl2 and NaCl respectively. Unlike many previously reported rGO membranes that rely on ultra-thin selective layers, this work demonstrates an effective strategy for fabricating superior rGO membranes for water treatment and desalination. [Display omitted] •Networked cellulose-incorporated porous rGO membranes were fabricated using simple vacuum filtration.•In-plane artificial pores on the nanosheets provide faster transport across the tortuous laminated channels.•The presence of networked cellulose improved hydrophilicity, rendered wrinkles morphology and enhanced stability of the selective layer.•Enhanced permeability due to intercalation and pores were demonstrated.
ISSN:2589-2347
2589-2347
DOI:10.1016/j.mtsust.2024.100682