Data-driven design of high-curie temperature full-heusler alloys for spintronic applications

In this study, we employ density functional theory (DFT) and subgroup discovery (SGD) to explore the structural and magnetic properties of full cubic Heusler compounds, with a particular emphasis on their Curie temperatures (Tc) and magnetic stability. Our comprehensive examination of 2903 structure...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Materials today physics 2024-09, Vol.47, p.101541, Article 101541
Hauptverfasser: Nguyen, Quynh Anh T., Ho, Thi H., Tien, Tran Bao, Kawazoe, Yoshiyuki, Bui, Viet Q.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:In this study, we employ density functional theory (DFT) and subgroup discovery (SGD) to explore the structural and magnetic properties of full cubic Heusler compounds, with a particular emphasis on their Curie temperatures (Tc) and magnetic stability. Our comprehensive examination of 2903 structures across both L21 and Xa phases identifies configurations that exhibit both structural stability and superior magnetic properties. Notable among these, compounds such as Co2MnSi, Co2CrGe, and Cr2VGe exhibit remarkable magnetic stability, maintaining their ferromagnetic properties well above room temperature. Co2MnSi displays a substantial magnetic moment of 5.00 μB and maintains its ferromagnetic properties up to a Curie temperature of 937 K, underscoring its suitability for high-temperature applications. Similarly, Co2CrGe, with a magnetic moment of 4.00 μB, transitions to a paramagnetic state at a higher temperature of 952 K, demonstrating enhanced thermal durability. Moreover, Cr2VGe, notable for its robust magnetic moment of 2.81 μB, retains its ferromagnetic characteristics until an exceptional 2412 K, making it extremely valuable for thermally intensive environments. These findings underscore the potential of these materials in developing durable and efficient spintronic devices that operate under extreme thermal conditions. By mapping the interplay between electronic structure and magnetic properties, our study provides a predictive framework for optimizing the performance of spintronic materials. This cover art captures the comprehensive analysis of full cubic Heusler compounds, X2YZ, through density functional theory (DFT) and subgroup discovery (SGD). The visual emphasizes the focus on Curie temperatures (Tc) and magnetic stability, showcasing compounds like Co2MnSi, and Co2CrGe. These materials exhibit remarkable thermal and magnetic stability, essential for high-performance spintronic devices. The image illustrates the robust ferromagnetic properties and high Tc, underscoring their potential for applications under extreme thermal conditions. [Display omitted] •High-throughput DFT and SGD analysis identified Heusler compounds with high Curie temperatures.•Co2MnSi and Co2CrGe exhibit magnetic stability and Curie temperatures well above room temperature.•Framework provided for optimizing spintronic materials based on structural and magnetic properties.
ISSN:2542-5293
2542-5293
DOI:10.1016/j.mtphys.2024.101541