Enhancing the thermoelectric performance of Cu–Ni alloys by introducing carbon nanotubes

High power factor and low thermal conductivity are imperative to maximize the energy conversion efficiency of thermoelectric materials. Constantan (Cu–Ni alloy), a widely-used material for thermocouples, has higher power factor (∼12000 μW m−1 K−2 at 950 K) [Mao et al. 2015] than the classic Bi2Te3-b...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Materials today physics 2021-01, Vol.16, p.100311, Article 100311
Hauptverfasser: Yuan, M., Sun, L., Lu, X.W., Jiang, P., Bao, X.H.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:High power factor and low thermal conductivity are imperative to maximize the energy conversion efficiency of thermoelectric materials. Constantan (Cu–Ni alloy), a widely-used material for thermocouples, has higher power factor (∼12000 μW m−1 K−2 at 950 K) [Mao et al. 2015] than the classic Bi2Te3-based thermoelectric materials (∼4500 μW m−1 K−2 at 300 K) [Poudel et al. 2008]. However, the high thermal conductivity restricts its thermoelectric performance. In this work, we demonstrate that, the thermal conductivity of Cu–Ni alloy can be effectively reduced from 48.1 to 9.6 W m−1 K−1 at 873 K by introducing carbon nanotubes (CNTs), and the thermoelectric performance is remarkably improved with the figure of merit (zT) being up to 0.41, an enhancement of about 141% over the pristine Cu–Ni alloy. Negative correlation between the total thermal conductivity of hybrid composite and the specific surface area of CNTs is further identified. The thermal conductivity suppression mechanism is ascribed to the introduction of both porous structures and carbon-nanotube-metal interfaces. Our studies provide a promising and general strategy to enhance the thermoelectric properties of materials with high thermal conductivity. The thermoelectric performance of constantan is greatly enhanced by introducing carbon nanotubes. [Display omitted] •Enhancing the thermoelectric performance of constantan by introducing carbon nanotube.•Searching for high-performance thermoelectric materials from metal alloys, instead of traditional semiconducting materials.•Reducing the thermal conductivity by introducing metal-carbon nanotube interface.
ISSN:2542-5293
2542-5293
DOI:10.1016/j.mtphys.2020.100311