Magnetic field-enabled ultrahigh-rate Zn metal anodes

Aqueous Zn-based flow batteries receive tremendous attention toward future grid-scale energy storage, but the uncontrollable dendrite growth and limited plating current density at the Zn anode severely hinder their application prospects. Herein, we realize non-dendritic Zn growth at an ultrahigh cur...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Materials today energy 2024-03, Vol.40, p.101509, Article 101509
Hauptverfasser: Wang, Yizhou, Liu, Chen, Chen, Jianyu, Guo, Tianchao, Tian, Zhengnan, Zhao, Zhiming, Zhu, Yunpei, Zhang, Xixiang, Zhao, Jin, Ma, Yanwen, Alshareef, Husam N.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:Aqueous Zn-based flow batteries receive tremendous attention toward future grid-scale energy storage, but the uncontrollable dendrite growth and limited plating current density at the Zn anode severely hinder their application prospects. Herein, we realize non-dendritic Zn growth at an ultrahigh current density of 100 mA/cm2 via the application of an external magnetic field. Through in-situ observation, morphology characterization, and electrochemical performance explorations, we find that the magnetic field can effectively inhibit the savage growth of dendrites. We believe this work can provide new inspiration for high-rate Zn metal anode research and promote the future applications of Zn-based flow batteries. [Display omitted] •Stable Zn deposition at 100 mA/cm2 until a Zn utilization rate of ∼90 % is observed in Sand's time test.•Ultra-large SEM images (>2 mm in width) of non-dendritic Zn deposition at 100 mA/cm2 are shown.•Stable symmetrical Zn cell operation at 100 mA/cm2 for 3000 cycles under a fixed capacity of 1 mAh/cm2 is presented.
ISSN:2468-6069
2468-6069
DOI:10.1016/j.mtener.2024.101509