Highly stretchable, stable MXene-based hydrogel for human motion monitoring

Conductive hydrogels have made them the material of choice for designing flexible sensors for elasticity, strain sensitivity, and excellent electrical conductivity. However, conductive hydrogels display poor tensile and cyclic stability due to the weak interfacial interaction between the gel network...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Materials today communications 2024-03, Vol.38, p.108240, Article 108240
Hauptverfasser: Liu, Yafei, Ran, Jing, Gui, Yujie, Lv, Ying, Feng, Huixia, Zhao, Xia, Qiu, Jianhui, Ma, Xuemei, Yang, Yuchen
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:Conductive hydrogels have made them the material of choice for designing flexible sensors for elasticity, strain sensitivity, and excellent electrical conductivity. However, conductive hydrogels display poor tensile and cyclic stability due to the weak interfacial interaction between the gel network scaffold and the rigid conducting material. To solve this problem, in this work, we designed a DN network conductive hydrogel consisting of physically crosslinked silk protein and polyacrylamide, with silk protein molecular chains and polyacrylamide molecular chains interspersed with each other. The hydrogel demonstrated superb tensile properties and cycling stability, and the introduction of MXene organic dispersion further enhanced the hydrogel's mechanical properties, electrical conductivity, and frost resistance. SF/PAM/MXene hydrogel demonstrated excellent tensile properties (4960%, 120 kPa), stability under 1000% cyclic stretching. The hydrogel has high sensitivity as a flexible sensor that can sense pressure changes and monitor the body's weak motion signal. [Display omitted]
ISSN:2352-4928
2352-4928
DOI:10.1016/j.mtcomm.2024.108240