Effect of fiber alignment on mechanical properties of chopped graphite fiber-reinforced copper-matrix composites: Designing fiber alignment in various stress conditions

Carbon-reinforced copper-matrix composites must provide improved mechanical properties if used as a structural part of machinery. However, little research has been conducted on the effect of the alignment of graphite fibers (GFs) with a high aspect ratio on the mechanical properties of composites. I...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Materials today communications 2022-12, Vol.33, p.104854, Article 104854
Hauptverfasser: Kim, Minkyoung, Lee, Hohyeong, Jeong, Minkyung, Zhang, Jun, Lee, Donggil, Han, Jun Hyun
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:Carbon-reinforced copper-matrix composites must provide improved mechanical properties if used as a structural part of machinery. However, little research has been conducted on the effect of the alignment of graphite fibers (GFs) with a high aspect ratio on the mechanical properties of composites. In this work, the effects of the alignment and volume fraction of GFs on the mechanical properties of GF/Cu composites subjected to tensile and compressive loading were analyzed and compared. The yield strength was highest when the composite with a GF volume fraction of 5% was subjected to compressive loading in the through-plane direction. The yield strength during tensile deformation was higher in the in-plane direction than in the through-plane direction. However, during compression testing, the yield strength was higher in the through-plane direction. Thus, the effects of the alignment and volume fraction of GFs on the tensile and compressive deformation behaviors of GF/Cu composites were revealed. These results are expected to provide a practical guide for optimizing the mechanical properties of GF/Cu composites subjected to various stress conditions as materials for the structural parts of machinery. [Display omitted]
ISSN:2352-4928
2352-4928
DOI:10.1016/j.mtcomm.2022.104854