Performance of NiO intercalated rGO nanocomposites for NH3 sensing at room temperature

NiO intercalated reduced graphene oxide nanocomposites (rGO/NiO NC’s) with different amounts of NiO nanoparticles (NP’s) were fabricated via solvothermal technique. NH3 gas sensors was measured at room temperature. The rGO/NiO NC’s appeared uniformly distributed NiO NP’s anchored to both sides of th...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Materials science in semiconductor processing 2022-01, Vol.137, p.106221, Article 106221
Hauptverfasser: Srirattanapibul, Sasithorn, Nakarungsee, Puttipol, Issro, Chaisak, Tang, I-Ming, Thongmee, Sirikanjana
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:NiO intercalated reduced graphene oxide nanocomposites (rGO/NiO NC’s) with different amounts of NiO nanoparticles (NP’s) were fabricated via solvothermal technique. NH3 gas sensors was measured at room temperature. The rGO/NiO NC’s appeared uniformly distributed NiO NP’s anchored to both sides of the rGO sheets. The NH3 gas sensing performance based on these rGO/NiO NC’s exhibited excellent both fast response and recovery times when exposed to 20 – 100 ppm of NH3. In addition, increasing the amount of NiO NP’s has an effect to the gas response ability, the response time and recovery time due to the enhancement of the active adsorption sites. Moreover, the 20% rGO/NiO NC’s presented a significant gas response of 4.14% to 100 ppm of NH3, taking 290 and 166 s for response time and recovery time, respectively. Besides, the rGO/NiO NC’s have an excellent long-term stability. Therefore, the rGO/NiO NC’s in this study can be efficiently used for NH3 detection at room temperature. From these results, they showed that the combination of NiO NP’s with the rGO would be a promising strategy for enhancing the NH3 sensing performance of metal oxide semiconductor (MOS) based devices at room temperature. (a) The response curves and (b) response and recovery time of rGO and rGO/NiO NC’s towards 40 ppm of NH3 at room temperature. [Display omitted] •NH3 gas sensors was measured at room temperature.•NiO∙rGO NC's looked like uniformly distributed NiO nanoplates anchored to both sides of rGO sheets.•20% rGO/NiO NC’s presented a significant gas response of 4.14% to 100 ppm of NH3.•The rGO/NiO NC's have an excellent long-term stability.
ISSN:1369-8001
1873-4081
DOI:10.1016/j.mssp.2021.106221