Room-temperature polarization-sensitive photodetectors: Materials, device physics, and applications
The acquisition of multi-dimensional optical information such as intensity, wavelength and polarization provides new ideas for improving the performance of photodetector to meet the efficient recognition of targets in complex environments in the future. When light interacts with matter, the change i...
Gespeichert in:
Veröffentlicht in: | Materials science & engineering. R, Reports : a review journal Reports : a review journal, 2024-12, Vol.161, p.100839, Article 100839 |
---|---|
Hauptverfasser: | , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | The acquisition of multi-dimensional optical information such as intensity, wavelength and polarization provides new ideas for improving the performance of photodetector to meet the efficient recognition of targets in complex environments in the future. When light interacts with matter, the change in the polarization state of light will reflect the material composition, surface morphology, etc. It has important research value and application prospects in target recognition, remote sensing, quantum communication and biomedical. Traditional polarization-sensitive photodetection requires the combination of complex optical devices such as polarizers, wave-plates, and lenses to regulate the polarization and wave-front of light waves, resulting in complex detection systems, high power consumption, and low integration. Recently, the non-complementarity of extra-nuclear electron in transition-metal dichalcogenides leads to an increase in chemical bond complexity and a decrease in in-plane symmetric elements, making them sensitive to polarized light. It is expected to break away from the traditional design concept of complex polarization imaging systems and explore new polarization detection technologies. However, the polarization-sensitive photodetector is still of great challenge. In this study, we first explore the principles of polarized light generation and detection. Next, we analyze the novel polarization-sensitive materials by classifying them into three categories: geometrically anisotropic, intrinsically anisotropic, and heterostructure materials. On this basis, we outline the performance of polarization detector devices based on these three classes of materials and present some of the performance enhancement methods that have been summarized and discussed. Finally, we explore the prevailing challenges and prospects, offering insights into the potential trajectory of advancements within this burgeoning field. |
---|---|
ISSN: | 0927-796X |
DOI: | 10.1016/j.mser.2024.100839 |