Innovative self-repairing binders tackling degradation and de-lithiation challenges: Structure, mechanism, high energy and durability

Maintaining battery stability is the greatest concern for the next generation of electronic devices, such as automotive and foldable electronics. Advanced lithium batteries experience mechanical fracturing during cycling due to structural changes, reducing their lifespan. Self-healing properties can...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Materials science & engineering. R, Reports : a review journal Reports : a review journal, 2024-09, Vol.160, p.100830, Article 100830
Hauptverfasser: Boorboor Ajdari, Farshad, Abbasi, Fereshteh, Molaei Aghdam, Ali, Ghorbani Chehel Khaneh, Fatemeh, Ghaedi Arjenaki, Atefeh, Farzaneh, Vahid, Abbasi, Aliakbar, Ramakrishna, Seeram
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:Maintaining battery stability is the greatest concern for the next generation of electronic devices, such as automotive and foldable electronics. Advanced lithium batteries experience mechanical fracturing during cycling due to structural changes, reducing their lifespan. Self-healing properties can effectively mitigate this issue, thereby increasing the device's durability. Utilizing intrinsic self-healing polymers (SHPs) is a prevalent strategy, addressing mechanical defects and enhancing electrochemical properties independently. This review begins with a discussion of the SHPs and their various mechanisms of self-healing capability, followed by a presentation of approaches and their strategies for competing with Silicon-based, Li-Metal, and Li-Sulfur batteries. SHPs or binders have a high potential to deal with the critical problems of cracks and volume change problems. Also, it discussed promising methods for employing self-healing materials to combat integrity and stability obstacles. It provided an overview of boosting Li-adsorbing systems, de-lithiation behavior, extending cycle life, and high retention capacity based on the coverage and interlayer binding role, increasing diffusion, and enhancing cycle life. This work would encourage researchers to concentrate substantially on developing self-healing properties for designing high-energy and durable lithium batteries. [Display omitted]
ISSN:0927-796X
DOI:10.1016/j.mser.2024.100830