DFT exploration: Optical and conduction band switching in indaceno donor moiety and its TiO2 adsorbed complexes for an efficient ON-OFF ratio

[Display omitted] •DFT vs SC-XRD calculations on indaceno crystalline material.•Solvent-assisted engineering to modify the optical and conduction band properties.•To offer valuable insights for designing high-efficiency photovoltaic devices.•Potential for solvent-based processing techniques to revol...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Materials science & engineering. B, Solid-state materials for advanced technology Solid-state materials for advanced technology, 2023-12, Vol.298, p.116855, Article 116855
Hauptverfasser: Hassan, Abrar U., Sumrra, Sajjad H., Li, Yuchuan, Mohyuddin, Ayesha, Noreen, Sadaf, Noreen, Saima, Nkungli, Nyiang K.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:[Display omitted] •DFT vs SC-XRD calculations on indaceno crystalline material.•Solvent-assisted engineering to modify the optical and conduction band properties.•To offer valuable insights for designing high-efficiency photovoltaic devices.•Potential for solvent-based processing techniques to revolutionize renewable energy technologies. This research paper explores the potential of solvent-assisted band engineering in an indaceno crystal, 9,18-bis(2,4,6-trimethylphenyl)dinaphtho[1,2-d:1,2-d']s-indaceno[1,2-b:5,6-b']bisthiophene (9,18-IDC), and TiO2 adsorbed complexes for breakthroughs in photovoltaic (PV) applications. Using density functional theory (DFT) calculations. The results demonstrate promising prospects for enhancing PV performance by conduction band (CB) engineering. In UV–Vis analysis, DMSO stands out as the most promising candidate exhibiting an absorption maxima (λmax) of 517 nm. These findings contribute to a deeper understanding of the role of solvent-assisted optical and CB engineering in optimizing the efficiency of PV systems. The DMSO was the best solvent, exhibiting an open circuit voltage (Voc) of 0.92 eV, a fill factor (FF) of 0.8994, a short circuit current (Jsc) of 36.12 mA/cm2, and a maximum incident power (Pmax) of 29.89 W, making it a promising choice for PV applications. This study can pave the way for developing PVs as more efficient and sustainable energy solutions.
ISSN:0921-5107
1873-4944
DOI:10.1016/j.mseb.2023.116855