Effects of TiB2 particles on deformation behavior, softening mechanisms and recrystallization texture of hot-compressed Fe-TiB2 composites

Fe-TiB2 composites, also termed as high modulus steel, offer a promising solution to the challenge of achieving both lightweight and high stiffness materials. However, the presence of TiB2 particles in Fe-TiB2 composites results in poor hot-workability. Therefore, understanding the effects of TiB2 p...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Materials science & engineering. A, Structural materials : properties, microstructure and processing Structural materials : properties, microstructure and processing, 2025-01, Vol.920, p.147540, Article 147540
Hauptverfasser: Ke, Yujiao, Fu, Bin, Peng, Chong, Qiao, Ze, Wang, Kaiyao, Dong, Yue, Tang, Hu, Xu, Zhefeng, Matsugi, Kazuhiro
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:Fe-TiB2 composites, also termed as high modulus steel, offer a promising solution to the challenge of achieving both lightweight and high stiffness materials. However, the presence of TiB2 particles in Fe-TiB2 composites results in poor hot-workability. Therefore, understanding the effects of TiB2 particles on the hot deformation behavior, dynamic recrystallization (DRX), and microstructural evolution of Fe-TiB2 composites is crucial for optimizing their hot-working process. In this study, we elucidated the effects of TiB2 particles on deformation behavior and dynamic softening behavior by conducting a series of isothermal compression tests on as-cast Fe-TiB2 composites and as-cast base alloys (control group) at temperatures of 800–1200 °C, strains of 0.36–1.2, and strain rates of 0.01–1 s⁻1. Using electron backscatter diffraction, we characterized the microstructures of composites and base alloys, showing that TiB2 particles induce a DRX process through particle stimulated nucleation (PSN) at low temperatures and promote continuous dynamic recrystallization (CDRX) at high temperatures. The presence of TiB2 particles have significantly affected the dislocation movement and distribution, which changes the deformation energy distribution and thus facilitates different DRX behaviors under various thermal deformation conditions. Additionally, the microstructure resulting from DRX through PSN exhibits significant texture weakening and grain refinement, presenting a promising method for fabricating ultrafine-grained Fe-TiB2 composites.
ISSN:0921-5093
DOI:10.1016/j.msea.2024.147540