Creep-fatigue behavior of nickel-based single crystal superalloy with different orientations: Experimental characterization and multi-scale simulation

In order to clarify the creep-fatigue interaction properties of nickel-based single crystal superalloys with different orientations, mechanical tests of [001], [011] and [111] orientations were conducted at 980°Cunder various stress states and microstructural characterization was performed. The resu...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Materials science & engineering. A, Structural materials : properties, microstructure and processing Structural materials : properties, microstructure and processing, 2023-10, Vol.886, p.145667, Article 145667
Hauptverfasser: Yin, Q., Wang, J.D., Wen, Z.X., Shi, Q.Y., Lian, Y.D., Yue, Z.F.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:In order to clarify the creep-fatigue interaction properties of nickel-based single crystal superalloys with different orientations, mechanical tests of [001], [011] and [111] orientations were conducted at 980°Cunder various stress states and microstructural characterization was performed. The results demonstrated that the creep-fatigue life was longest for the [111] orientation, followed by the [001] orientation, and the [011] orientation exhibited the lowest life. Furthermore, as stress levels increased, the life of specimens with different orientations decreased. Damage accumulation in specimens with various orientations was primarily influenced by the formation and growth of material micropores. Fracture analysis revealed that the failure of [001] and [111] oriented specimens resulted from a combination of multi-slip systems and micropore aggregation. Conversely, the fracture of [011] oriented specimens occurred due to a single slip system. Molecular dynamics simulation was employed to analyze the evolution of defects under creep-fatigue loading for different orientation models, further supporting the fracture mechanism. In addition, the life of the specimens was predicted using the crystal plasticity theory based on energy dissipation, and the results were within ±1.5 error bands. •The creep-fatigue behavior of single crystal with different orientation at 980℃ has been systematically studied.•The crystal plasticity theory based on energy dissipation is used to predict the creep-fatigue interaction life.•The creep-fatigue behavior of single crystal with different orientation at 980℃ has been systematically studied. (2)The crystal plasticity theory based on energy dissipation is used to predict the creep-fatigue interaction life. (3)Experimental characterization and multi-scale simulation (CP and MD) reveal the defect evolution and fracture behavior.
ISSN:0921-5093
1873-4936
DOI:10.1016/j.msea.2023.145667