Synergistic effects of Ta and Mo on the hydrogen embrittlement resistance in ultra-high strength hot stamping steel
Hydrogen embrittlement (HE) is a major problem that restricts the application of ultra-high strength hot stamping steels. This paper proposes a novel strategy for against HE via Ta–Mo multi-microalloying, and systematically analyzes the synergistic effects of Ta and Mo. The results show that a major...
Gespeichert in:
Veröffentlicht in: | Materials science & engineering. A, Structural materials : properties, microstructure and processing Structural materials : properties, microstructure and processing, 2023-05, Vol.872, p.144956, Article 144956 |
---|---|
Hauptverfasser: | , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | Hydrogen embrittlement (HE) is a major problem that restricts the application of ultra-high strength hot stamping steels. This paper proposes a novel strategy for against HE via Ta–Mo multi-microalloying, and systematically analyzes the synergistic effects of Ta and Mo. The results show that a major fraction of Ta and a small fraction of Mo generated high-density semicoherent nanosized (Ta, Mo) C precipitates and further refined the prior-austenite-grain/martensite structure. Ta–Mo multi-microalloying resulted in significantly higher precipitate and grain boundary (GB)-induced H trap densities and a higher H trapping capacity of the precipitates than Ta alloying, thereby reducing the H diffusivity. Additionally, Ta–Mo alloying significantly increased the HE resistance through the following mechanisms: (i) Ta–Mo hindered H enrichment at the GBs by providing numerous additional H traps and increasing the GB cohesive strength through Mo segregation, inhibiting hydrogen-enhanced decohesion (HEDE); and (ii) Ta reduced the proportion of Σ3 boundaries, Mo increased the binding force of Σ3 boundaries, and (Ta, Mo) C precipitates hindered the H–dislocation interactions, suppressing hydrogen-enhanced localized plasticity (HELP). In summary, Ta–Mo multi-microalloying combines the advantages of Ta and Mo and synergistically hinders the HELP and HEDE, thereby significantly increasing the HE resistance.
[Display omitted]
•Ta–Mo multi-microalloying greatly reduces HE susceptibility of hot stamping steels.•Mo replaces a part of Ta in carbides, forming high-density semicoherent (Ta, Mo) C.•Ta–Mo increases both the H trap density and H trapping capacity of the precipitates.•HEDE inhibition: (Ta, Mo) C homogenizes H while Mo segregation enhances GB cohesion.•HELP impedance: Ta and Mo affect Σ3 boundaries while (Ta, Mo) C pin H–dislocations. |
---|---|
ISSN: | 0921-5093 1873-4936 |
DOI: | 10.1016/j.msea.2023.144956 |