Superior elevated-temperature strength of Mg–Y–Sn alloys with thermostable multi-scale precipitates and grain structure

The newly developed Mg–Y–Sn extrusions are prepared by adding Sn (0.6 and 1.5 wt%) to Mg–6Y. The optimized Mg–6Y-1.5Sn exhibited superior elevated-temperature strength up to 300 °C, charactered by the pronounced strain hardening. Specifically, the yield stress and ultimate tensile strength of this a...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Materials science & engineering. A, Structural materials : properties, microstructure and processing Structural materials : properties, microstructure and processing, 2022-09, Vol.852, p.143643, Article 143643
Hauptverfasser: Yin, Dongdi, Li, Shupeng, Sun, Kexin, Fu, Ruihao, Zhang, Yingbo, Jiang, Bin, Huang, Yuanding, Zeng, Ying
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:The newly developed Mg–Y–Sn extrusions are prepared by adding Sn (0.6 and 1.5 wt%) to Mg–6Y. The optimized Mg–6Y-1.5Sn exhibited superior elevated-temperature strength up to 300 °C, charactered by the pronounced strain hardening. Specifically, the yield stress and ultimate tensile strength of this alloy at 300 °C are 186 ± 3 MPa and 328 ± 7 MPa, respectively, which are 64% and 93% higher than that of the highly RE-alloyed WE54. Sn addition to Mg–6Y introduces a large number of thermal-stable micron/nano-scale Sn3Y5 precipitates. Mg–6Y-1.5Sn, which contained more nano-scale precipitates, exhibited better elevated-temperature strength than that of Mg–6Y-0.6Sn. The grain structure transitioned from a uniformed equiaxial grain in Mg–6Y to a thermal-stable multiscale grain structure in Mg–6Y-0.6/1.5Sn, which consisted of fiber textured un-DRXed area with high dislocation density and randomly orientated DRXed grains with low dislocation density. The exceptional elevated-temperature strength strongly correlated to the combined thermal-stable multiscale precipitates and grain structures.
ISSN:0921-5093
1873-4936
DOI:10.1016/j.msea.2022.143643