A zero-dimensional 1-butylpiperazine-cadmium(II) hybrid material: Synthesis, structural analysis, and DFT studies

•Novel organoammonium-Cd(II) hybrid material synthesized and characterized.•Crystal structure elucidated via X-ray diffraction and Hirshfeld analysis.•Crystal morphology predicted using Bravais-Friedel-Donnay-Harker (BFDH) model.•Optical, electronic properties explored experimentally and theoretical...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Journal of molecular structure 2025-02, Vol.1321, p.140079, Article 140079
Hauptverfasser: Hermi, Sabrine, Ahmad, Shakeel, Belaid, Amal K., Islam, Mohammad Shahidul, Habib, Mohamed A., Almarhoon, Zainab M., Hajji, Melek
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:•Novel organoammonium-Cd(II) hybrid material synthesized and characterized.•Crystal structure elucidated via X-ray diffraction and Hirshfeld analysis.•Crystal morphology predicted using Bravais-Friedel-Donnay-Harker (BFDH) model.•Optical, electronic properties explored experimentally and theoretically.•Chemical reactivity assessed with conceptual-DFT calculations. This study reports the synthesis and characterization of an organoammonium-cadmium(II) hybrid material, (BPH₂)₂[Cd₂Cl₈] (BP = 1-butylpiperazine), using a combination of experimental and theoretical techniques. Single-crystal X-ray diffraction shows a centrosymmetric crystal structure in the P1¯ space group, featuring a zero-dimensional (0D) arrangement where binuclear [Cd₂Cl₈]⁴⁻ anions and (C₈H₂₀N₂⁺) cations are linked by N—H···Cl and C—H···Cl hydrogen bonds. Hirshfeld surface analysis further elucidates these intermolecular noncovalent interactions, highlighting the dominant role of H···Cl contacts in the molecular packing. The crystal morphology is further investigated via the Bravais-Friedel-Donnay-Harker (BFDH) model. Infrared (IR) spectroscopic analysis was conducted to identify vibrational modes, confirm structure, and elucidate bonding features. Additionally, Experimental UV–visible study indicates an optical band gap energy of 4.75 eV, and density functional theory (DFT) calculations corroborate these findings, predicting a direct band gap of 4.45 eV. Moreover, theoretical calculations, including the complex dielectric function, band structure, and total density of states (DOS), were performed to explore the electrical and optical properties. Finally, the chemical reactivity was evaluated using conceptual-DFT descriptors at the B3LYP/SDD/aug-cc-pVTZ level of theory. [Display omitted]
ISSN:0022-2860
DOI:10.1016/j.molstruc.2024.140079