Synthesis, characterization, and antibacterial activity of dibenzildithiocarbamate derivates and Ni(II)–Cu(II) coordination compounds
•Dibenzylamine derivates were obtained by classic synthesis and microwave.•Dibenzyldithiocarbamates and Ni(II)–Cu(II) complexes were full characterized.•Two new compounds were characterized by single crystal X-ray diffraction.•All the DTC compounds showed greater activity against different type of b...
Gespeichert in:
Veröffentlicht in: | Journal of molecular structure 2021-12, Vol.1245, p.131109, Article 131109 |
---|---|
Hauptverfasser: | , , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | •Dibenzylamine derivates were obtained by classic synthesis and microwave.•Dibenzyldithiocarbamates and Ni(II)–Cu(II) complexes were full characterized.•Two new compounds were characterized by single crystal X-ray diffraction.•All the DTC compounds showed greater activity against different type of bacteria.
In this work, the study of the synthesis methodology to obtain dibenzylamine derivates as intermediates for the formation of dithicarbamate ligands (DTC) and its coordination compounds was conducted. Four molecules derived from dibenzylamine were synthesized by two methodologies: classical (reflux) and microwave. From these amines, Four dithiocarbamate ligands (DTC): dibenzyldithiocarbamate, N-benzyl-1-(4-methoxyphenyl)dithiocarbamate, N-benzyl-1-(4-chlorophenyl)dithiocarbamate, and N-benzyl-1-(3-nitrophenyl)dithiocarbamate, and eight coordination complexes with general formula [M(DTC)2]nH2O (M= Cu(II) and Ni(II)) were obtained. All the compounds were characterized using different spectroscopic and thermal techniques such as Fourier-transform infrared spectroscopy (FT-IR), ultraviolet–visible spectroscopy (UV–VIS), proton and carbon-13 nuclear magnetic resonance (1H and 13C NMR), thermogravimetric analysis–differential scanning calorimetry (TGA-DSC). Additionally, it was possible to characterize two new crystalline phases of salts through single-crystal X-ray diffraction: dibenzyl ammonium nitrate and N-benzyl-1-(3-nitrophenyl)ammonium chloride. Additionally, microbial inhibition tests were conducted using the dibenzildithiocarbamate derivates. All DTC compounds showed important activity against Pseudomonas aeruginosa and Staphylococcus aureus but less sensitivity against Escherichia coli and Mycobacterium smegmatis. Among the coordination compounds, only [Cu(N-benzyl-1-(3-nitrophenyl)dithiocarbamate)2] presented a moderate activity against M. smegmatis mc2 155.
[Display omitted] |
---|---|
ISSN: | 0022-2860 1872-8014 |
DOI: | 10.1016/j.molstruc.2021.131109 |