Effect of three distinctive crosslinking agents on the dielectric properties of as-prepared polyimide aerogels prepared from super-critical fluid technique

In this study, the impact of three distinct cross-linking agents—1,3,5-benzene tricarbonyl trichloride (BTC), tris(4-aminophenyl)amine (TAPA), and 3-aminopropyltrimethoxysilane (APTMS)—on the dielectric and thermal properties of polyimide aerogels was investigated. Poly(amic acid) (PAA) was synthesi...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Microporous and mesoporous materials 2025-02, Vol.383, p.113406, Article 113406
Hauptverfasser: Ho, Ming-Jaan, Chen, Kuan-Ying, Yan, Minsi, Chen, Yun-Ting, Jhuang, Wei-Syuan, Chou, Ho-Hsiu, Yeh, Jui-Ming
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:In this study, the impact of three distinct cross-linking agents—1,3,5-benzene tricarbonyl trichloride (BTC), tris(4-aminophenyl)amine (TAPA), and 3-aminopropyltrimethoxysilane (APTMS)—on the dielectric and thermal properties of polyimide aerogels was investigated. Poly(amic acid) (PAA) was synthesized by reacting diamine ODA with dianhydride BPDA in NMP, followed by cross-linker introduction in acetic anhydride and pyridine. The analysis reveals that BTC and TAPA, both organic cross-linkers with varying aromatic content, influence the dielectric properties differently. APTMS, an organosilane, introduces inorganic siloxane linkages, enhancing the thermal stability of the aerogels. Key findings include that BTC-crosslinked aerogels achieved the lowest dielectric constant, 1.215, and dielectric loss, 0.025, making them particularly effective for high-frequency applications. In contrast, TAPA and APTMS-crosslinked aerogels displayed higher dielectric constants and losses. Differential Scanning Calorimetry (DSC) revealed that PI-APTMS exhibited the highest glass transition temperature (Tg), followed closely by PI-TAPA, both significantly higher than the non-crosslinked polyimide aerogel (NAPI), indicating excellent thermal properties. The melting points (Tm) of PI-APTMS and PI-BTC were similar, around 294 °C, attributed to the density of structural stacking. At the same time, PI-TAPA exhibited a lower Tm, likely due to its superior network structure. Thermogravimetric analysis (TGA) further indicated that PI-TAPA had the highest thermal decomposition temperature (T5d), with all aerogels remaining stable above 420 °C. These results underscore the potential of BTC-crosslinked polyimide aerogels for applications requiring minimal dielectric loss and low constants. We also highlight the influence of organic versus inorganic cross-linkers on thermal and dielectric performance, advancing the field of high-speed communication materials. [Display omitted] •The study compares crosslinker effects on polyimide aerogels via ScCO2 technology.•All aerogels exhibited exceptional thermal stability, remaining stable at > 420 °C.•BTC-crosslinked aerogels achieved the lowest Dk, 1.215, and Df, 0.025.
ISSN:1387-1811
DOI:10.1016/j.micromeso.2024.113406