Silica nanospheres-encapsulated polymer ligands-bound Pd nanoparticles as highly efficient and selective catalysts for semi-hydrogenations of alkynes
In this work, we report that poly (acrylic acid) (PAA) and poly (ethylenimine) (PEI) capped Pd nanoparticles (NPs) encaged in hollow silica nanospheres (PAA/PEI-Pd@HSNs) function as highly efficient and selective catalysts for hydrogenations of a series of alkynes. We used the coordination of Pd4+ i...
Gespeichert in:
Veröffentlicht in: | Microporous and mesoporous materials 2024-09, Vol.377, p.113213, Article 113213 |
---|---|
Hauptverfasser: | , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | In this work, we report that poly (acrylic acid) (PAA) and poly (ethylenimine) (PEI) capped Pd nanoparticles (NPs) encaged in hollow silica nanospheres (PAA/PEI-Pd@HSNs) function as highly efficient and selective catalysts for hydrogenations of a series of alkynes. We used the coordination of Pd4+ ions with PEI and PAA to build the micelles system in an ethanol-water system, which was employed as the templates for silica deposition and following NaBH4 reduction to give PAA/PEI-Pd@HSNs. The materials feature polymer-coordinated small Pd NPs inside silica nanospheres with thin shells and large cavities. The PAA/PEI-Pd@HSNs exhibit extremely high catalytic efficiency and reusability with enhanced alkene selectivity of ∼90 % at near complete conversions for hydrogenation of a series of alkynes, and maintain high selectivity even with a significantly extended reaction time. The enhanced catalytic performance of PAA/PEI-Pd@HSNs is ascribed to their thin silica shells/large cavities to improve the catalytic activity, PEI/PAA ligands that inhibit the deep hydrogenation of alkenes to alkanes on Pd NPs, and the protection of silica shells for inner ligands and Pd NPs to improve the reusability.
[Display omitted]
•Polymer-capped Pd nanoparticles were encaged in hollow silica nanospheres.•Thin silica shells and large cavities facilitated mass transfer.•The catalysts exhibited high alkene selectivity for hydrogenations of alkynes. |
---|---|
ISSN: | 1387-1811 |
DOI: | 10.1016/j.micromeso.2024.113213 |