Pterostilbene effectively inhibits influenza A virus infection by promoting the type I interferon production

With the prevalence of novel strains and drug-resistant influenza viruses, there is an urgent need to develop effective and low-toxicity anti-influenza therapeutics. Regulation of the type I interferon antiviral response is considered an attractive therapeutic strategy for viral infection. Pterostil...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Microbes and infection 2023-03, Vol.25 (3), p.105062, Article 105062
Hauptverfasser: Wu, Wenjiao, Ye, Yilu, Zhong, Yingyuan, Yan, Xiukui, Lin, Jianguo, Qiu, Jianxiang, Liu, Shuwen, Fang, Zhixin
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:With the prevalence of novel strains and drug-resistant influenza viruses, there is an urgent need to develop effective and low-toxicity anti-influenza therapeutics. Regulation of the type I interferon antiviral response is considered an attractive therapeutic strategy for viral infection. Pterostilbene, a 3,5-dimethoxy analog of resveratrol, is known for its remarkable pharmacological activity. Here, we found that pterostilbene effectively inhibited influenza A virus infection and mainly affected the late stages of viral replication. A mechanistic study showed that the antiviral activity of pterostilbene might promote the induction of antiviral type I interferon and expression of its downstream interferon-stimulated genes during viral infection. The same effect of pterostilbene was also observed in the condition of polyinosinic-polycytidylic acid (poly I:C) transfection. Further study showed that pterostilbene interacted with influenza non-structural 1 (NS1) protein, inhibited ubiquitination mediated degradation of RIG-I and activated the downstream antiviral pathway, orchestrating an antiviral state against influenza virus in the cell. Taken together, pterostilbene could be a promising anti-influenza agent for future antiviral drug exploitation and compounds with similar structures may provide new options for the development of novel inhibitors against influenza A virus (IAV).
ISSN:1286-4579
1769-714X
DOI:10.1016/j.micinf.2022.105062