Self-healing aramid nanofiber membranes enabling decontamination of high-level radioactive waste in extreme environments

Developing aramid membranes with favorable processability and structural tunability for critical separation applications remains a challenging endeavor. This study reports a bottom-up strategy to prepare heterocyclic aramid nanofibers (HANFs) through polymerization-induced self-assembly (PISA), whic...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Journal of membrane science 2025-03, Vol.718, p.123683, Article 123683
Hauptverfasser: Wang, Yifan, Jia, Jianfeng, Geng, Yiyun, Tuo, Xinlin, Mao, Xiaoguang, Ye, Gang
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:Developing aramid membranes with favorable processability and structural tunability for critical separation applications remains a challenging endeavor. This study reports a bottom-up strategy to prepare heterocyclic aramid nanofibers (HANFs) through polymerization-induced self-assembly (PISA), which enables the development of a new category of aramid aerogel membranes with distinctive self-healing behaviors. By manipulating the dynamic assembly of the building blocks driven by non-covalent interactions under thermal annealing, the morphology, texture and porosity of the aerogel membranes can be modified. Tunable mass-transfer property across the membranes is thus achieved, allowing effective decontamination of simulated high-level radioactive waste (HLRW) containing abundant fission products and rare earth metals. Particularly, the aerogel membranes demonstrate excellent structural stability under intense γ-ray irradiation (up to 50 kGy) in strong-acid solutions (8 mol/L nitric acid, 72 h). Overall, this study provides molecular-level insights into the supramolecular assembly of aramid nanofibers, and the methodology established here opens up opportunities for the customized preparation of functional aramid membranes adaptable for separation applications in extreme environments. [Display omitted] •Development of a ‘bottom-up’ strategy to prepare heterocyclic aramid nanofibers (HANFs) and novel aramid membranes.•Discovery of the self-healing behavior of heterocyclic aramid membranes driven by dynamic hydrogen-bonding.•Effective decontamination of hazardous high-level radioactive wastes (HLRWs) under extreme environments.
ISSN:0376-7388
DOI:10.1016/j.memsci.2024.123683