Fabrication of high-flux PTFE hollow fiber membranes through nonionic surfactant infiltration coupled with mussel-inspired chemistry coating

Polytetrafluoroethylene (PTFE) hollow fiber membrane holds tremendous potential for the treatment of complex wastewater due to its outstanding chemical and thermal stability. However, its treatment efficiency is often hindered by the low water permeate flux arising from the inherent hydrophobicity o...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Journal of membrane science 2024-05, Vol.702, p.122812, Article 122812
Hauptverfasser: Zhang, Shun, Lu, Dan, Chen, Weifeng, Xiang, Xinchen, Zheng, Danjun, Wang, Jing, Yao, Zhikan, Bi, Fei, Zhang, Lin
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:Polytetrafluoroethylene (PTFE) hollow fiber membrane holds tremendous potential for the treatment of complex wastewater due to its outstanding chemical and thermal stability. However, its treatment efficiency is often hindered by the low water permeate flux arising from the inherent hydrophobicity of PTFE. Here, we present a gentle and convenient hydrophilic modification method that involves immersion in a nonionic surfactant aqueous solution, followed by dopamine self-polymerization. The nonionic surfactant facilitated the penetration of the dopamine solution into the membrane, where dopamine self-polymerized to form a hydrophilic layer on the surface and inner pores of the membrane. The hydrophilicity-modified PTFE hollow fiber membranes demonstrated an impressive increase in water permeate flux, reaching 10231.4 L m−2 h−1, nearly ten times that of the original membrane. Even after prolonged exposure to a strong acid solution (pH = 1) or an oxidant solution (1000 mg L−1 NaClO) for two weeks, this membrane still maintained its favorable water permeability. Furthermore, the modified PTFE membranes also exhibited remarkable resistance to fouling by humic acid. These results showcased a straightforward method for designing a hydrophilic layer on PTFE hollow fiber membranes, underscoring their significant potential for real wastewater treatment applications. [Display omitted] •Mild and convenient method for hydrophilic modification of PTFE membranes.•Overall hydrophilic modification on the surface and within pores.•Maintaining excellent water permeability under acidic and oxidizing conditions.•Improved resistance to humic acid (HA) and high flux for tap water.
ISSN:0376-7388
1873-3123
DOI:10.1016/j.memsci.2024.122812