Capsaicin mimic-polyethyleneimine crosslinked antifouling loose nanofiltration membrane for effective dye/salt wastewater treatment

Loose nanofiltration membranes (LNMs) based on the crosslinking of polyphenol and polyamine continue to receive tremendous attention for dye/salt separation owing to their high dye rejection and salt transmission. Herein, a novel antifouling LNM was fabricated by the crosslinking of polyphenol-inspi...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Journal of membrane science 2022-01, Vol.641, p.119923, Article 119923
Hauptverfasser: Zhang, Lili, Xu, Li, Yu, Hongyan, Yao, Puyu, Zhang, Mei, Guo, Fengxiang, Yu, Liangmin
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:Loose nanofiltration membranes (LNMs) based on the crosslinking of polyphenol and polyamine continue to receive tremendous attention for dye/salt separation owing to their high dye rejection and salt transmission. Herein, a novel antifouling LNM was fabricated by the crosslinking of polyphenol-inspired capsaicin-mimic N-(5-methyl acrylamide-2,3,4 hydroxy benzyl) acrylamide (AMTHBA) and polyethyleneimine (PEI) on hydrolyzed polyacrylonitrile (HPAN) substrate via green rapid coating (GRC) approach. The environmental-friendly GRC process based on Schiff-base reaction and electrostatic interaction could be achieved within 10 min, and the surface properties of the LNMs could be precisely tailored by adjusting the coating parameters. As a result, the AM-PEI/HPAN LNMs, which possessed superior hydrophilic and weak negatively charged surface, exhibited excellent separation performance. The optimal AM-PEI/HPAN LNM presented high dye rejections (i.e., 99.2% for Methyl Blue, 98.6% for Congo Red and 75.8% for Crystal Violet) and low salt rejections (i.e., R (NaCl, 4.4%) 
ISSN:0376-7388
1873-3123
DOI:10.1016/j.memsci.2021.119923