Novel RO membranes fabricated by grafting sulfonamide group: Improving water permeability, fouling resistance and chlorine resistant performance

Membrane fouling and degradation caused by free chlorine oxidation seriously hinder the long-term operation of aromatic polyamide (PA) thin-film-composite (TFC) membranes. In this study, sulfonamide monomers 4-aminobenzene sulfonamide (4-ABSA) and 2-aminoethanesulfonamide (2-AESA)) were facilely gra...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Journal of membrane science 2022-01, Vol.641, p.119919, Article 119919
Hauptverfasser: Wang, Juntao, Li, Shao-Lu, Guan, Yaxu, Zhu, Can, Gong, Genghao, Hu, Yunxia
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:Membrane fouling and degradation caused by free chlorine oxidation seriously hinder the long-term operation of aromatic polyamide (PA) thin-film-composite (TFC) membranes. In this study, sulfonamide monomers 4-aminobenzene sulfonamide (4-ABSA) and 2-aminoethanesulfonamide (2-AESA)) were facilely grafted onto the PA RO membranes surface via layer-by-layer interfacial polymerization (LbL-IP) method, endowing with much improved water flux, antifouling, and chlorine-resistance properties. The chemical compositions and surface properties of the RO membranes were systematically investigated by various techniques, as FTIR and XPS results clearly showed that sulfonamide groups were successfully grafted onto RO membranes’ surface. Compared to the pristine membrane, the water flux of the two modified membranes increased by 50.8% and 59.1%, reached 3.65 ± 0.15 L m−2 h−1 bar−1 and 3.85 ± 0.05 L m−2 h−1 bar−1, respectively, meanwhile their NaCl rejection remained above 99.25 ± 0.08%. Due to the improvement of surface hydrophilicity and decrease of surface roughness, the antifouling performance of the modified membranes was greatly improved. Moreover, the N–H moieties on sulfonamide can act as sacrificial units for free chloride attack to significantly improve the chlorine-resistance performances of the modified RO membranes compared to the pristine one, with NaCl rejection remain above 98.95 ± 0.09% after chlorination intensity of 8000 ppm⋅h under acidic condition of pH 4. This simple and efficient surface grafting strategy and modifying materials make it have great application potential in the field of water treatment. [Display omitted] •Hydrophilic sulfonamide molecules were anchored onto PA RO membrane surface through LbL-IP method.•The water permeability and antifouling performance of the modified membranes significantly improved.•The sulfonamide moieties also served as chlorine-sacrificial units can improve their chlorine-resistant properties.
ISSN:0376-7388
1873-3123
DOI:10.1016/j.memsci.2021.119919