Microstructure characterization and tensile properties of directionally solidified Sn-52 wt% Bi-1wt% Sb and Sn-52wt% Bi-2wt% Sb alloys

Sn-Bi-based Thermal Interface Materials (TIM) are adequate alloys to promote heat dissipation in power electronics. However, despite the necessary thermal connection, mechanical support for different components and substrates are of prime importance in microelectronic devices. In this framework, the...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Materials characterization 2020-08, Vol.166, p.110445, Article 110445
Hauptverfasser: Paixão, Jeverton Laureano, Gomes, Leonardo Fernandes, Reyes, Rodrigo Valenzuela, Garcia, Amauri, Spinelli, José Eduardo, Silva, Bismarck Luiz
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:Sn-Bi-based Thermal Interface Materials (TIM) are adequate alloys to promote heat dissipation in power electronics. However, despite the necessary thermal connection, mechanical support for different components and substrates are of prime importance in microelectronic devices. In this framework, the effects of Antimony (Sb) additions on the microstructure and tensile properties of the Sn-52 wt% Bi alloy are investigated. Various Sn-Bi(-Sb) samples solidified at different cooling rates and two levels of Sb-containing alloys allow a comprehensive examination of length scales of either dendritic or eutectic microstructures. A number of experimental techniques are used here to permit a sound analyses of the ternary Sn-Bi(-Sb) alloys: transient directional solidification, optical microscopy (OM), triangle and intercept quantification methods, scanning electron microscopy (SEM), x-ray fluorescence (XRF), x-ray diffraction (XRD), tensile tests and fractography. The addition of Sb enhances the nucleation of primary dendritic trunks, which resulted in a decrease in the primary dendritic arm spacing (λ1) by about 5 times for the Sn-52 wt% Bi-2 wt% Sb alloy as compared to the results for the binary Sn-Bi alloy. The relationships found for tensile properties as a function of the secondary dendritic arm spacing (λ2) demonstrate that Sb additions increase the alloy strength while preserving the ductility. This is due to very thin SnSb intermetallic particles formed in the Sn-rich dendritic matrix. The influence of λ2 variation on both the yield and ultimate strengths is roughly insignificant while the ductility varies strongly between 14.4% and 52% for samples solidified from 0.05 °C/s to 5.0 °C/s respectively. When 2.0 wt% Sb is added, there is a maintenance in the levels of ductility as those found for the binary Sn-Bi alloy. This occurs especially for very refined dendritic and eutectic microstructures samples, which also exhibit a ductile fracture mode. •The growth of complex regular Sn + Bi eutectic prevailed for the ternary Sn-Bi(-Sb) alloys.•Bi showed a higher rate of precipitation while Sb was more kept in solid solution.•Sb additions increased the alloy strength while preserving the ductility.•Enhanced tensile properties could be attained for the Sn-Bi(-Sb) samples having λ2–1/2 of 0.30.
ISSN:1044-5803
1873-4189
DOI:10.1016/j.matchar.2020.110445