Glacial-aged development of the Tunisian Coral Mound Province controlled by glacio-eustatic oscillations and changes in surface productivity

Cold-water corals are key species of benthic ecosystems, sensitive to changes in climate and capable of recording them in the chemical composition of their skeletons. The study of cold-water coral mound development in relation to palaeoceanographic variations during the Pleistocene and Holocene stag...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Marine geology 2022-04, Vol.446, p.106772, Article 106772
Hauptverfasser: Corbera, Guillem, Lo Iacono, Claudio, Standish, Christopher D., Gràcia, Eulàlia, Ranero, César, Huvenne, Veerle A.I., Anagnostou, Eleni, Foster, Gavin L.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:Cold-water corals are key species of benthic ecosystems, sensitive to changes in climate and capable of recording them in the chemical composition of their skeletons. The study of cold-water coral mound development in relation to palaeoceanographic variations during the Pleistocene and Holocene stages in the Mediterranean Sea has mainly been focussed in the Alboran Sea (Western Mediterranean). The present study describes the coral deposits and corresponding ages of 3 gravity cores, acquired from the newly discovered Tunisian Coral Mound Province (Central Mediterranean), which comprises several ridge-like mounds. All the cores acquired displayed dense coral deposits, dominated by Desmophyllum pertusum fragments embedded within a muddy sediment matrix. Overall, 64 coral samples have been dated with the UTh laser ablation MC-ICP-MS method, revealing corals of mostly Pleistocene age ranging from ~MIS 11 to 8.4 ka BP. Although coral mound formation was reduced for most of the last 400 kyr, a main stage of pronounced mound formation occurred during the last glacial period, which contrasts to the findings previously published for coral mounds in other regions of the Mediterranean Sea. Coral mound formation during the last glacial was most likely associated with a colder seawater temperature than the one observed in the present-day, an increased surface productivity and an appropriate depth of the interface between Atlantic Waters and Levantine Intermediate Waters. The combination of the data acquired here with that of previous mound formation studies from the Alboran Sea also suggests that cold-water coral mounds located at greater depths develop at slower rates than those found in shallower settings. •Tunisian Coral Mounds: first known to develop during the last glacial in the Mediterranean.•High surface productivity and adequate AW-LIW interface depth forced mound formation.•Distance from mounds to AW-LIW interface key in defining their formation pace.
ISSN:0025-3227
1872-6151
DOI:10.1016/j.margeo.2022.106772