On-chip label-free sorting and enrichment of microplastic particles by using deterministic lateral displacement
A novel deterministic lateral displacement (DLD) method employing a pressure-driven flow for the continuous size-based separation of microplastic particles is presented in this paper. To induce the DLD effect, arrays of triangular posts were designed to enhance the sorting resolution and reduce the...
Gespeichert in:
Veröffentlicht in: | Marine chemistry 2024-03, Vol.260, p.104364, Article 104364 |
---|---|
Hauptverfasser: | , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | A novel deterministic lateral displacement (DLD) method employing a pressure-driven flow for the continuous size-based separation of microplastic particles is presented in this paper. To induce the DLD effect, arrays of triangular posts were designed to enhance the sorting resolution and reduce the particles clogging. For the particles with a diameter larger than the critical diameter (Dc) in the DLD device, they move in bump mode with collision to microposts. While, the particles flow in zigzag mode if their sizes are below the Dc value. The DLD microfluidic chip enables simplified fabrication process and shows property of label-free and high throughput. Numerical studies were conducted to discuss the Dc values in the microchannel with horizontally symmetrical and asymmetrical posts, where Dc was found smaller in the asymmetric horizontal flow, enabling higher separation sensitivity and resolution. Experiments were conducted to demonstrate the separation of 10 μm and 15 μm polystyrene microplastic particles, and different types of polystyrene and polyethylene microplastic particles by adjusting the flow rates. In order to achieve successful separation, the flow rates between the sheath flow and the sample solution were well matched. In this way, the proposed DLD microfluidic chip with horizontally asymmetrical triangular posts shows property of label-free, high throughput, capability to analyze microplastic particle selectively and sensitively, possibility of sorting nanoplastic particles.
[Display omitted]
•The DLD microfluidic chip employs the horizontally asymmetrical posts.•The critical diameter of symmetrical vertical flow and asymmetric horizontal flow is discussed.•The optimizing of flow rates between sheath flow and the particles solution is described.•Separation of microplastic particles with different diameters and types is conduct. |
---|---|
ISSN: | 0304-4203 1872-7581 |
DOI: | 10.1016/j.marchem.2024.104364 |