Diversity of origin and geodynamic evolution of the mantle beneath the Variscan Orogen indicating rapid exhumation within subduction-related mélange (Moldanubian Zone, Bohemian Massif)
A variable assemblage of ultrabasic rocks along with minor eclogites investigated on a small area of a few km2 (Gföhl unit, Moldanubian Zone of the Bohemian Massif) reflects incorporation of contrasting mantle domains within a subduction-related tectonic mélange during the Variscan orogeny. Based on...
Gespeichert in:
Veröffentlicht in: | Lithos 2022-08, Vol.422-423, p.106726, Article 106726 |
---|---|
Hauptverfasser: | , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | A variable assemblage of ultrabasic rocks along with minor eclogites investigated on a small area of a few km2 (Gföhl unit, Moldanubian Zone of the Bohemian Massif) reflects incorporation of contrasting mantle domains within a subduction-related tectonic mélange during the Variscan orogeny. Based on mineral composition, whole-rock chemistry, isotopic signatures, and pressure-temperature (P–T) estimates, four principal lithological types have been distinguished (1) spinel harzburgite (2) garnet lherzolite (3) spinel websterite and (4) eclogite. Spinel harzburgite, exclusively associated with HT migmatized gneisses, corresponds to the refractory oceanic lithosphere, as demonstrated by whole-rock composition (low Al2O3, CaO), chemistry of spinel (Cr# 0.5). Websterites likely represent products of decompression partial melting of the asthenospheric mantle with a variable input of crustal component, whereas eclogites correspond to HP crystal cumulates from partial melts migrating through the Variscan mantle wedge. Both peridotite protoliths experienced various degrees of secondary refertilization, recorded as a cryptic metasomatic overprint, due to interaction with subduction-related silicate melts, from which numerous websterite and rare eclogite layers crystallized. The secondary mantle refertilization via melt-peridotite reaction is well-documented by decreasing bulk Mg# along with MgO/SiO2, elevated Al2O3/SiO2, TiO2 and FeOtot contents, and isotopic composition (87Sr/86Sr338 ~ 0.7051). Moreover, the positive correlation between highly fluid-immobile incompatible trace elements (e.g. Ti, Sc, V, Zr, Yb) and distribution of REE and Li is consistent with the melt refertilization trend.
During the Variscan subduction, lherzolite experienced UHP conditions (42 kbar, 1100 °C). The presence of Cr-spinel relics preserved in garnet suggests that lherzolite was dragged from the shallow mantle wedge to deeper levels of the subduction zone, probably along with the underlying subducting oceanic plate involving refractory harzburgite. This deep burial during the Variscan subduction was closely followed by rapid exhumation dated by the Lu-Hf age of 338.4 ± 6.3 Ma, corresponding to re-equilibration at l |
---|---|
ISSN: | 0024-4937 1872-6143 |
DOI: | 10.1016/j.lithos.2022.106726 |