Dynamic graph transformer for 3D object detection
LiDAR-based 3D detection is critical in autonomous driving perception systems. However, point-based 3D object detection that directly learns from point clouds is challenging owing to the sparsity and irregularity of LiDAR point clouds. Existing point-based methods are limited by fixed local relation...
Gespeichert in:
Veröffentlicht in: | Knowledge-based systems 2023-01, Vol.259, p.110085, Article 110085 |
---|---|
Hauptverfasser: | , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | LiDAR-based 3D detection is critical in autonomous driving perception systems. However, point-based 3D object detection that directly learns from point clouds is challenging owing to the sparsity and irregularity of LiDAR point clouds. Existing point-based methods are limited by fixed local relationships and the sparsity of distant and occluded objects. To address these issues, we propose a dynamic graph transformer 3D object detection network (DGT-Det3D) based on a dynamic graph transformer (DGT) module and a proposal-aware fusion (PAF) module. The DGT module is built on a dynamic graph and graph-aware self-attention module, which adaptively concentrates on the foreground points and encodes the graph to capture long-range dependencies. With the DGT module, DGT-Det3D has better capability to detect distant and occluded objects. To further refine the proposals, our PAF module fully integrates the proposal-aware spatial information and combines it with the point-wise semantic features from the first stage. Extensive experiments on the KITTI dataset demonstrate that our approach achieves state-of-the-art accuracy for point-based methods. In addition, DGT brings significant improvements when combined with state-of-the-art methods on the Waymo open dataset. |
---|---|
ISSN: | 0950-7051 1872-7409 |
DOI: | 10.1016/j.knosys.2022.110085 |