Aerodynamic damping functions in vortex-induced vibrations for structures with sharp edges

Ultimate limit state and fatigue analyses of slender structures in vortex-induced vibrations require knowledge of aerodynamic damping in the lock-in range. The aerodynamic damping depends primarily on the shape of the cross section. The paper provides an experimental database of aerodynamic damping...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Journal of wind engineering and industrial aerodynamics 2023-07, Vol.238, p.105411, Article 105411
Hauptverfasser: Lupi, Francesca, Pieper, Lisa, Winkelmann, Ulf, Hoeffer, Ruediger
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:Ultimate limit state and fatigue analyses of slender structures in vortex-induced vibrations require knowledge of aerodynamic damping in the lock-in range. The aerodynamic damping depends primarily on the shape of the cross section. The paper provides an experimental database of aerodynamic damping functions for different shapes, with a focus on sharp-edged cross sections. The data are discussed with respect to existing results available for circular cross sections. The aerodynamic damping is measured directly through wind tunnel tests in forced vibrations. Wind tunnel tests in free vibrations are used to extend the functions in the range of large oscillations and to validate the model. This concept is implemented in a well-founded calculation method for vortex induced vibrations for the design of slender structures. This is suitable for code applications and is in line with the procedure described in the latest generation of Eurocode. The novelty with respect to previous models like the Vickery&Basu model consists in an aerodynamic damping parameter with positive curvature. This can be easily controlled for varying cross sections by changing the value of the function exponent. •Aerodynamic damping functions for vortex induced vibrations•Calculation methods for vortex induced vibrations•Vortex induced vibrations for sharped edge cross sections•Interpretation of aeroelastic behaviour using forced vibration wind tunnel tests.
ISSN:0167-6105
1872-8197
DOI:10.1016/j.jweia.2023.105411